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ABSTRACT

The physical modeling and simulation of nondestructive evaluation (NDE) measurements has

a major role in the advancement of NDE and structural health monitoring (SHM). In ultrasonic

NDE (UNDE) simulations, evaluating the scattering of ultrasound by defects is a computationally-

intensive process. Many UNDE system models treat the scattering process using exact analytical

methods or high-frequency approximations such as the Kirchhoff approximation (KA) to make the

simulation effort tractable. These methods naturally have a limited scope. This thesis aims to

supplement the existing scattering models with fast and memory-efficient full-wave models that are

based on the boundary element method (BEM).

For computational efficiency, such full-wave models should be applied only to those problems

wherein the existing approximation methods are not suitable. Therefore, the adequacy of different

scattering models for representing various test scenarios has to be studied. Although analyzing

scattering models by themselves is helpful, their true adequacy is revealed only when they are

combined with models of other elements of the NDE system and the resulting predictions are

evaluated against measurements. Very few comprehensive studies of this nature exist, particularly

for full-wave scattering models. To fill this gap, two different scattering models– the KA and

a boundary-element method– are integrated into a UNDE system model in this work, and their

predictions for standard measurement outputs are compared with experimental data for various

benchmark problems. This quantitative comparison serves as a guideline for selecting between

the KA and full-wave scattering models for performing UNDE simulations. In accordance with

theoretical expectations, the KA is shown to be inappropriate for modeling penetrable (inclusion-

type) defects and non-specular scattering, such as diffraction from thin cracks above certain angles

of incidence.
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A key challenge to the use of full-wave scattering methods in UNDE system models is the high

computational cost incurred during simulations. Whereas the development of fast finite element

methods (FEM) has inspired various applications of the FEM for ultrasound modeling in 3D het-

erogeneous and anisotropic media, very few applications of the BEM exist despite the progress in

accelerated BEMs for elastodynamics. The BEM is highly efficient for modeling scattering from

arbitrary shaped 3D defects in homogeneous isotropic media due to a reduction in the dimension-

ality of the scattering problem, and this potential has not been exploited for UNDE. Therefore,

building on recent developments, this work proposes a fast and memory-efficient implementation

of the BEM for elastic-wave scattering in UNDE applications.

This method features three crucial elements that provide robustness and fast convergence. They

include the use of (1) high-order discretization methods for fast convergence, (2) the combined-field

integral equation (CFIE) formulation for overcoming the fictitious eigenfrequency problem, and

(3) the multi-level fast-multipole algorithm (MLFMA) for reducing the computational time and

memory resource complexity. Although numerical implementations based on a subset of these three

elements are reported in the literature, the implementation presented in this thesis is the first to

combine all three. Some numerical examples are presented to demonstrate the importance of these

elements in making the BEM viable for practical applications in UNDE. This thesis contains the

first implementation of the diagonal-form MLFMA for solving the CFIE formulation for elastic wave

scattering without using any global regularization techniques that reduce hypersingular integrals

into less singular ones.
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CHAPTER 1. INTRODUCTION

In this chapter, background material on NDE modeling is presented first. Then, a general

introduction to physical modeling of ultrasonic immersion testing is given to define the goals and

scope of this thesis. Finally, a survey of UNDE models and simulation softwares is presented. The

content of the last section establishes the context of this thesis.

1.1 Evolution of NDE

Nondestructive evaluation (NDE) is the process of evaluating the material properties of a struc-

ture, component or part without damaging its functionality. Its primary function is to detect

anomalies (also called as defects or flaws) to ensure the integrity and reliable operation of the ob-

ject under test. Initially, nondestructive testing (NDT) procedures were not required to be highly

quantitative as they were concerned primarily with the detection of defects that are larger than a

given threshold size. In the 1970s, the development and acceptance of the damage tolerance notion

in engineering design philosophy created a need for more advanced inspection systems. Beyond

indicating the presence of relatively large defects, inspections were required to provide quantitative

information about their shape, size, location, etc. [1] [2, ch. 1]. Both NDT technology and its un-

derlying science base evolved rapidly in response to this need. This quantitative shift is generally

seen as marking the difference between NDT and NDE technologies, the latter also being referred

to as quantitative NDE or QNDE.

As suggested above, the fail-safety of safety-critical components was ensured through inspection

procedures even before the widespread adoption of the damage tolerance philosophy. It was accepted

that defects could develop in components during service, and inspection procedures were designed

to detect them before they grow to an extent as to cause component failure. However, since both the

frequency of inspection and the threshold defect size for acceptance/rejection were not determined
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from studies of defect propagation in materials, the inspection procedures so designed are not ideally

reliable and optimally cost-efficient at the same time. For example, if inspections are not performed

quite frequently, it may be highly probable for a defect to grow from the minimum detectable size

to a critical size between two inspection routines, as in stress corrosion cracking (SCC) [3]. This

possibility cannot be confidently ruled out without performing a study to that effect. Moreover,

for any chosen threshold defect size, not every flaw that exceeds this size may need attention

as some flaws may not grow to the fracture-critical size before the next maintenance routine. To

overcome these problems, the philosophy of damage tolerance takes the rate of growth of defects into

consideration while designing a component and its accompanying inspection procedures [4]. That

is, an understanding of the growth of defects and their effect on the performance of components is

inherent to this philosophy.

For example, the fitness-for-service analysis procedure outlined in the ASME boiler and pressure

vessel code [5, §6.7.5] includes the following steps:

1. Determination of flaw size and orientation using UNDE procedures and resolving flaws into

simple shapes.

2. Calculation of the applied stress and the corresponding stress intensity factor (SIF) at the

flaw.

3. Determination of material toughness and crack propagation properties.

4. Assessing the acceptability of the flaw, which includes comparing material strength against

the SIF and estimating the extent of crack growth until the next scheduled shutdown.

The last step in the above procedure requires knowledge of the applied stress at the crack (step 2)

and the crack propagation properties (step 3), which in turn calls for knowledge of the defect size

and shape (step 1). The latter is obtained from NDE methods. This example illustrates the role

of NDE methods in the damage tolerance design philosophy.

In the ASME code cited above, design equations are recommended for the calculation of stress

intensity. Experimental testing of samples of the actual material and published data for generic
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materials are recommended for determination of crack propagation properties. However, by us-

ing appropriate computational analyses for crack-growth estimation and stress calculation, higher

values of stress limits may be realized. Clearly, computational models benefit mostly from the uti-

lization of accurate and complex information about the crack size and shape, which is not possible in

analytical and empirical models. Therefore, to fully realize the benefits of advanced computational

models, NDE methods need to provide accurate quantitative information about defects.

Apart from the progress in computational models, advances in fracture mechanics models them-

selves motivate the enhancement of NDE methods. The development of non-linear fracture me-

chanics thoeries is a case in point. In the linear elastic fracture mechanics theory, which is valid

when the material conditions satisfy linear elasticity assumptions during the fracture process, the

stress intensity factor (SIF) is a criteria for predicting fracture [6]. Both fatigue crack growth

(FCG) and fracture criteria depend on the SIF, which in turn depends on the particular loading

and crack geometry– particularly, the shape and size of the crack. However, for ductile materials

such as steel, fracture is accompanied by extensive plastic deformation and the assumptions of

linear elastic fracture mechanics are not valid. As the fracture mechanics discipline advanced, its

principles were extended to elastic-plastic and fully plastic conditions to develop a non-linear frac-

ture mechanics theory. In this new theory, geometrical parameters such as the crack-tip opening

displacement (CTOD) and the crack-tip opening angle (CTOA) were found to be directly related

to FCG and fracture [6, 7]. The development of quantitative NDE methods that accurately capture

such important geometrical features of defects, beyond estimating their overall size and shape, is

therefore beneficial.

Further, the advancement of quantitative NDE methods supports the practical realization of

novel FCG models. For instance, consider FCG in the presence of residual stress (RS) fields, or

RS-FCG in short, for brevity. While it is a common practice to induce compressive RS fields on the

surfaces of components to increase their service life, the benefits of this practice are not considered

during fitness-for-service analyses [8]. This is partly due to the lack of reliable models for RS-FCG,

and partly due to the difficulties in determining the induced RS fields. UNDE methods may help
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in resolving both the problems by providing the lacking information. For example, some RS-FCG

models use the crack opening SIF to determine an effective SIF range, which is then applied in FCG

prediction [8, 9]. Reliable knowledge of the crack opening SIF is thus crucial. As it is known that

ultrasonic scattering is sensitive to the crack-closure effect [10], UNDE methods can be employed

to estimate the crack opening SIF, for example, through an optimization approach [9]. Similarly,

sensitivity of ultrasonic wave propagation and scattering to RS fields [10–12] may be exploited for

accurate determination of the residual stresses, which is required for RS-FCG modeling.

In general, as FCG models evolve to account for RS fields and complex environmental factors,

as in SCC and hydrogen embrittlement, additional parameters that characterize the complex envi-

ronment around the cracks may be needed. It is possible to evaluate such parameters empirically if

NDE measurements correlate with them. Hence, there is an extensive scope and substantial moti-

vation for developing advanced NDE methods that not only predict the size and geometry of defects

accurately in complex environments but also, if possible, determine parameters characterizing these

complex environments in a way that is useful for predicting FCG.

1.2 Significance of NDE Modeling

Given the increasingly quantitative direction that NDE methods are taking, accurate NDE

models are highly useful and, to an extent, required for the development and application of advanced

NDE procedures. Some applications of NDE models are described below to justify their significance.

Although they are illustrated with examples specific to UNDE, equivalent applications in other NDE

modalities can be readily inferred.

• Designing for inspectablity [13–15]: In the preliminary stages of the design of components

and parts, evaluating the ease of inspection of the designed object has significant benefits.

The development of NDE models and simulation packages enables the simulation of NDE

inspections in the early design phases, which may be useful for supplementing and validating

inspectability guidelines that are learnt from practice. This allows the component design
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to be better optimized for performing easy quantitative inspections and eliminates potential

inspectability problems earlier in the design cycle.

• Model-assisted probability of detection (MAPOD) [16, 17]: As with any physical

inspection, NDE testing involves many parameters whose values vary slightly from the re-

spective nominal values determined or assumed for an inspection. Examples of such variables

include the macroscopic electromagnetic and elastic material properties of the inspection

specimen, orientation of the transducers, roughness of the defect surface, etc. Therefore, the

measured defect response in an NDE test varies from its nominal value, which corresponds

to the nominal values of all other parameters in the measurement. Inferences drawn from the

measured defect responses, therefore, involve varying degrees of uncertainty. In the interest

of characterizing the reliability of such inferences, it is required to evaluate the uncertainties

present in the measurement. Typically, this involves performing a probability of detection

(POD) study. A conventional POD test is performed by the experimental testing of multiple

specimens with different defect sizes, defect orientations, etc. However, once the probability

distributions of the fundamental parameters that influence the defect response are known

either through experimental or theoretical studies, the remaining part of the POD study,

which involves estimating the effect of uncertainties in the fundamental parameters on the

defect response, can be performed through physical modeling and simulation. This gives the

opportunity to include variables that are not easy to replicate in experimental specimens as

well as the freedom to consider a larger number of testing cases with reduced time, cost and

effort.

• Inferring defect properties: NDE measurements aim to infer properties such as the size,

shape, etc., of defects from the measured signals. This is a classic inversion problem. Many

inversion models are derived from the physical insight that is gained through forward mod-

els. For example, in UNDE, some flaw-sizing methods which are based on measured time-

differences of pulse-echos were derived from high-frequency scattering models [18]. Some

other methods were derived from weak-scattering models such as the Born approximation
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(BA) [19–21]. Similarly, physical modeling of UNDE systems shows that a part of (the angu-

lar spectrum of) the scattering amplitude (SA) of a relatively small defect can be extracted

from pulse-echo measurements [22, §11.2]. The extracted SA spectra allow the classification

of defects according to predefined shapes. However, with an increase in the complexity of

testing scenarios, many assumptions employed in deriving simple forward models become in-

creasingly invalid and more accurate forward models are required. Accurate forward models

provide insight into the process of wave scattering under highly complex test scenarios, which

is essential for the development of advanced imaging and flaw-sizing algorithms. Moreover,

data-driven inverse algorithms, which are black-box alternatives to physics-based models, also

require accurate forward models.

• Testing of inverse algorithms: In addition to the development of inverse algorithms,

NDE models also play an important role in their testing. As most defect sizing and imaging

algorithms are developed under assumptions of ideal conditions such as the absence of surface

roughness, the effect of non-idealities on the performance of these algorithms has to be studied.

Specifically, for UNDE, roughness on the crack surface, crack-closure, crack-tip radius [23],

residual stresses [10] and the extent of the plastic region around the crack [24] are known to

affect the defect response. Ideally, the effect of such conditions should be characterized in

reliability studies such as the POD analysis. However, in practice, the difficulty in finding

their probability distributions precludes their inclusion in these studies. Still, the effect of

non-idealities on the sizing algorithms has to be understood. Experimental studies will only

indicate the overall performance of any given sizing algorithm in the presence of several

non-idealities and do not reveal the effect of individual factors separately, as modeling and

simulation could. With the help of appropriate models, sensitivity of sizing and imaging

algorithms to various non-ideal factors can be studied individually, and the loss of performance

due to the most offending factors can be potentially addressed on an ad hoc basis.
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Figure 1.1: Schematic of immersion testing setup for detecting a defect inside a test block.

1.3 Goals and Scope of the Thesis

This section introduces a specific ultrasonic immersion testing model. The goals and scope of

this thesis will be defined relative to this model. A schematic of an ultrasonic immersion test is

shown in Figure 1.1. The test block is immersed in water to facilitate the coupling of ultrasound into

it. The test procedure involves the following steps. A pulse generator sends a high-voltage pulse in

the ultrasonic frequency range to the transmitting transducer. The pulse causes the transducer to

emit an acoustic wave into water, which then propagates into the block and scatters off the defect.

The scattered waves reaching the receiving transducer are converted back to a voltage pulse and

sent to the receiver. Depending on the number of transducers used and their locations relative

to each other, UNDE tests are classified into three distinct methods. In the pulse-echo method,

a single transducer is used as both the transmitter and the receiver. In the through-transmission

method, two different transducers are used, with the receiving transducer positioned on the opposite

side of the transmitting transducer. When two different transducers are used in any configuration

other than through-transmission, the inspection is called a pitch-catch test.
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There are three common formats of data collection and representation, namely the A-scan,

B-scan and C-scan. These are typically described with respect to a pulse-echo setup. In the A-

scan, the voltage is depicted as a function of the time for a fixed transducer location. In the

B-scan, voltage-versus-time data is collected over a line and displayed as a 2D image, with time

and position on the scan line as the variables. In the C-scan, the transducer scans over an area.

The voltage-versus-time data at every scan position is time-gated to select the reflections generated

in a particular depth range inside the test block. The maximum value of the voltage envelope in

this time-range is calculated and displayed as a 2D image, with each pixel representing one scan

position.

As is evident from the above description, UNDE systems involve multiple physical processes.

For example, a transducer couples electromagnetic and elastodynamic phenomena, where the exact

nature of coupling depends on the type of the transducer. Within elastodynamic phenomena, we

find the propagation, mode conversion and scattering of acoustic and elastic waves. UNDE models

have to accurately represent all these different physical processes to guarantee overall accuracy.

It is indeed possible to model the entire system with only partial differential equations (PDEs)

and appropriate boundary conditions, without treating different physical processes separately. The

solutions of these equations can be obtained via numerical methods such as the finite element

method (FEM). However, in practice, this requires high computational effort in terms of the time

and memory usage. Many UNDE models, therefore, model different physical processes individually

as it allows the simulation of some processes via efficient approximations [25–27]. The interaction

between the sub-models that represent different processes is handled using analytical techniques.

This hybrid approach of modeling different parts of the system with different methods makes

the overall simulation effort tractable. The mathematical basis for this approach is the following

equation for the frequency spectrum of the receiver voltage (attributed to scattering from the

defect) [22, 28] or some equivalent of it [29]

∆VR(ω) =
2πρ2c

2
p2β(ω)

(−iω)ρ1c1SR

∫
Sf

V̂ (1)(x, ω) V̂ (2)(x, ω) Ã(x, ω) exp
(
ikp2e

(2) · x
)
dS(x), (1.1)
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where the transducers are assumed to act like pistons, ω is the angular frequency, β(ω) is a quantity

that models the transducers, cables and the pulser/receiver, SR is the areas of the face of the

receiving transducer, ρ1 is the mass density of water, c1 is the speed of sound in water, V̂ (1)(x, ω)

and V̂ (2)(x, ω) are the diffraction correction coefficients that describe the beam propagation towards

and away from the defect under the paraxial approximation, kp2 is the wavenumber of longitudinal

waves in the block, Sf is the surface of the defect, ρ2 is the mass density of the block, cp2 is the

longitudinal wave speed in the specimen under test, e(2) is the unit vector in the direction of the

plane wave characterizing the scattered field, x represents the position vector with respect to a

predefined coordinate system and Ã(x, ω) is a quantity that depends on the scattered displacement

and stress fields. Only the voltage generated by scattered longitudinal waves is considered. The

above equation is based on several other assumptions, which will be detailed in the next chapter.

It suffices here to mention that the block is assumed to be infinite in extent for modeling wave-

scattering from the defect. That is, multiple-scattering between the defect and the walls of the

block is ignored.

Different quantities in Equation (1.1) model the effects of different components and processes

in the immersion testing system. For example, β(ω) models the cables, transducers and the

pulser/receiver electronics, V̂ (1)(x, ω) and V̂ (2)(x, ω) model the beam propagation effects in wa-

ter and the block, and Ã(x, ω) models the scattering of ultrasound from the defect. Particularly,

the quantity represented by Ã(x, ω) depends entirely on how plane waves are scattered by the

defect. For brevity, the process of finding the scattered fields will be called the scattering problem.

This work aims to obtain solutions to the scattering problem without making any approximations

that restrict the physics of scattering. Such solutions are commonly known as full-wave solutions

and the methods used to compute them are called full-wave methods.

Solutions to the scattering problem are usually obtained using high-frequency approximation

methods, among which the Kirchhoff approximation (KA) is very popular [13, Chap. 10]. Being

an approximation method, the KA is already known to be invalid for modeling scattering under

certain scenarios [2, 13]. However, it is not clear a priori to what extent inaccuracies in the scattering
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solutions, due to the application of KA under these scenarios, affect the overall accuracy of UNDE

models. The second chapter presents an answer by applying a full-wave model and the KA to

benchmark problems in UNDE modeling and comparing the predictions of both modeling techniques

with measured data for standard outputs. It is shown that there are significant inaccuracies in the

pulse-echo predictions of the KA if the defects are penetrable (inclusion-type defects) or if there is

non-specular scattering from the defects, as in the case of diffraction from thin cracks.

Broadly speaking, this thesis aims to advance full-wave scattering models that are based on

boundary integral equations (BIEs). These models are well-known alternatives to the KA for

simulating scattering from defects in homogeneous, isotropic elastic media. Together with the

high-frequency approximation methods, they provide accurate solutions over a much broader range

of testing scenarios than what is allowed by either type of models alone. However, whereas the

numerical implementation of approximation methods is computationally fast and memory-efficient,

numerical methods for solving BIEs are computationally intensive and do not scale efficiently with

an increase in the domain size. This is one of the major impediments to the integration of full-wave

BIE methods into UNDE system models. Ensuring the uniqueness of solutions is another problem

with (frequency-domain) BIEs as certain types of BIEs are known to have multiple solutions at

some frequencies. In practice, the values of such “irregular” frequencies are not known a priori as

they depend on the shape of the defect and elastic properties of the host medium. The conventional

displacement BIE applied for modeling the scattering of ultrasound has this problem. Although

alternative BIE formulations that have unique solutions at all frequencies are available, they are

not very popular as they involve hypersingular integrals.

This thesis presents a numerical method for computing the scattering solutions by solving a

BIE. The method relies on three crucial elements to solve the two problems stated above. These

elements include the use of

• high-order discretization methods,

• the multilevel fast-multipole algorithm (MLFMA), and
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• the combined-field integral equation (CFIE) formulation.

The first two choices address the problem of computational cost, and the last one solves the problem

of irregular frequencies. Although numerical implementations based on a subset of these three

choices are available, the implementation presented in this thesis is the first to combine all three. In

the third chapter, the importance of high-order discretization is demonstrated through a numerical

study of two state-of-the-art full-wave boundary element methods [30, 31] that differ only in their

discretization order. It is shown that the particular high-order method considered in the study

reduces the computational time and memory usage significantly. This result is non-trivial as high-

order discretizations complicate the calculation of near-field matrix elements in boundary element

methods, which may increase the overall simulation time.

In the fourth chapter, a boundary element method (BEM) for solving the CFIE is presented.

As mentioned before, this method implements high-order geometry and field discretization. As

one of the kernels in the BIE is hypersingular, the calculation of near-field BEM matrix elements

involves integrating highly singular functions. Unless special analytical techniques are employed to

weaken the singular nature of the integrands, computing such integrals requires a large number of

quadrature points, which is problematic as it increases the computational cost. High-order geome-

try discretization further complicates this problem as the integrals have to be computed on curved

surfaces, which naturally have lesser number of constraints than planar surfaces. In this work, the

near-field matrix elements, which include both truly-singular and near-singular integrals, are com-

puted using a singularity-subtraction (SS) technique. The SS procedure applied on truly-singular

integrals is well-known whereas the one applied on nearly-singular integrals is new. Complete

formulas for the SS of near-singular integrands are given to simplify replication of the method.

Application of the MLFMA to the CFIE formulation is described in the fifth chapter. The

MLFMA exploits a factorization of the BIE kernels to decrease the computational complexity of

solving the discretized BIE. As in the fourth chapter, complete formulas are given for factorization of

the kernels. A method to simplify the calculation of radiation and receiving patterns of the kernels

is also shown. The sixth chapter is devoted to the problem of irregular frequencies. The problem



www.manaraa.com

12

is described mathematically, and several numerical examples are given for illustration. Finally,

numerical examples are presented to demonstrate that the CFIE formulation has no irregular

frequencies for a proper choice of the coupling coefficient.

1.4 Review of UNDE Models

This section presents a review of UNDE system models. As mentioned in the previous section,

UNDE models typically involve semi-analytical (or equivalently, composite) modeling wherein dif-

ferent physical processes, such as wave propagation, scattering, etc., are treated separately. Given

the large number of methods developed for modeling each of these processes individually, a mul-

titude of possibilities exist for synthesizing different composite models. For example, a composite

UNDE model that treats the scattering process via the KA can be modified by replacing the KA

scattering model with any numerical method. Reviewing all such possibilities is beyond the scope

of this work. Therefore, only some popular UNDE system models and simulation packages are

reviewed. Since this thesis is concerned with scattering models, system models are reviewed with

specific attention to how the scattering process is represented. Some promising scattering models

which can be integrated into composite UNDE models are also mentioned.

1.4.1 CIVA

CIVA is a NDT simulation platform developed by the French Atomic Commission (CEA) [32].

The UNDE simulation tool in CIVA is based on a semi-analytical model that is derived from field

reciprocity considerations and several physical assumptions [29]. This model is closely related to

the Auld reciprocity equation for the flaw response [28], which is the basis for Equation (1.1).

Similar to the composite model described by Equation (1.1), CIVA’s model involves three separate

models, one each for computing the transducer beam, flaw scattering and field reception [33].

The transducers are assumed to act like pistons. Radiation from the transducer is modeled by

assuming a distribution of point velocity sources on its radiating face [34]. Each point source emits

a spherical wave. The radiated field at any point is given by the sum of the contributions from
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each point source. Mathematically, this sum is equivalent to the Rayleigh-Sommerfeld integral over

the transducer face [35][13, §8.1.1]. In evaluating the contribution of each source, an asymptotic

approximation (geometrical optics) is applied, which leads to a so-called divergence factor that

describes the evolution of the wavefront as the beam propagates and refracts at material interfaces

[35]. The divergence factor is evaluated using the pencil method [36], which is sufficiently general as

to apply to beam propagation in heterogeneous and anisotropic media, and transmission through

curved interfaces [37]. As the transducers are modeled through point sources, it is possible to

simulate a wide range of transducers including angle beam probes and arrays.

Various flaw scattering models are available in CIVA. Their applicability is restricted based on

the nature of the flaw. It should be noted that such restrictions within CIVA do not always follow the

theoretical validity of the scattering models as they may involve specific practical limitations. The

different flaw scattering models include the Kirchhoff approximation (KA), the Born approximation

(BA), the geometrical theory of diffraction (GTD), the physical theory of diffraction (PTD), exact

analytical models using separation-of-variables (SOV), and the finite element method (FEM) [33,

38]. Within CIVA, the KA can be applied to volumetric defects of simple shapes (but for any type

of material inclusion) [39, 40] and crack-like (or equivalently, zero thickness) defects of arbitrary

shape [32, 41]. The GTD and PTD can be used for simulating diffraction from edges of crack-like

defects of any shape. For multifaceted and branched flaws, GTD and PTD are applied only to the

free edges and not the internal (wedge-type) edges [33]. CIVA features a modified version of the

BA known as the doubly-distorted wave BA [42]. It can be applied to volumetric inclusion-type

defects of simple shapes. The SOV technique can handle cylindrical and spherical cavities as well

as spherical inclusions [39]. The FEM can be applied to any type of 2D defect [43]. Extension of

the FEM for 3D defects of canonical shapes is under development [44, 45].

Despite the impressive set of scattering models available in CIVA, arbitrary 3D volumetric

defects can be handled only by the KA at the time of this writing. The KA is accurate for modeling

specular and leading reflections from smooth objects. It is not accurate for edge diffractions and

secondary reflections, such as internal reflections from the dark (non-insonified) side of an inclusion.
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In CIVA, the drawbacks of the KA in modeling diffractions are partly resolved by combining it with

the GTD, as the latter handles edge diffractions more accurately. Specifically, the GTD model in

CIVA uses the GTD coefficients derived from a stress-free half-plane crack with an infinite edge,

with suitable modifications to account for the finite extent of edges in practical simulation models

[33, 46]. As the GTD coefficients diverge in the specular and forward transmission directions [41], a

modified version of the PTD is employed to build the KA-GTD hybrid model [33]. Since this PTD

model is based on the GTD coefficients of a crack (zero-thickness defect), it cannot be applied to

wedge-like edges. PTD models of the above mentioned type do exist for wedges with infinite-edges

[38], but they are yet to be extended to treat finite-sized edges, which will in turn allow wedges

with arbitrary shaped edges to be modeled.

The simulation output in CIVA is the total force on the transducer face, that is, the integral

of the pressure on its surface [29]. The pressure field at the transducer is computed using field

reciprocity. The output amplitude is calibrated using the echo from a reference planar reflector.

Electro-acoustic transduction is modeled implicitly by assigning the measured signal of the cal-

ibration experiment as the input signal of the scattering model. See [29] for further details on

this.

1.4.2 UTSIM

UTSIM is a software package developed at the Center for NDE, Iowa State University, for

simulating ultrasonic immersion testing [13, §14.4.1]. It was redesigned recently as an extensible

software package and renamed as UTSim2 [25]. UTSim2 is based on the Thompson-Gray (TG)

measurement model [47], which is valid for modeling inspections of small defects. The exact sense

of smallness of the defect can be discerned by deriving the TG model from the Auld’s reciprocity

equation for the flaw response. When transducers are located far from the defect, application of the

paraxial approximation in the Auld’s reciprocity equation leads to Equation (1.1). The TG model

is derived from Equation (1.1) by further assuming the velocity diffraction coefficients (resulting

from the application of paraxial approximation) to be constant over the surface of the flaw. This
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allows the diffraction coefficients to be factored out from the integral over the flaw surface, leading

to the following mathematical expression for the voltage spectrum of the flaw response

∆VR(ω) =
2πρ2c

2
p2β(ω)

(−iω)ρ1c1SR
V̂ (1)(x0, ω) V̂ (2)(x0, ω)

∫
Sf

Ã(x, ω) exp
(
ikp2e

(2) · x
)
dS(x), (1.2)

where x0 is the position vector of any point near the defect. The integral in the above equation can

be shown to be a projection of the scattering amplitude of the defect, which doesn’t depend on the

amplitude of the transducer beam. Therefore, the TG measurement model is a linear time-invariant

(LTI) model. UTSim2 has, in addition, a large-flaw model that computes (1.1) directly without

making the small-flaw assumption [25, 48].

The beam diffraction coefficients were originally computed using Gauss-Hermite expansions

[49, 50] adopted from the works of Bruce Thompson and others [49, 51, 52]. Although later

versions of UTSIM employed the faster and more versatile Multi-Gaussian (MG) beam model

[13, 48], UTSim2 does not seem to support this method [25]. UTSIM also has a 3D ray-tracing

feature for geometries of arbitrary shape. This feature ignores beam spread but computes the ray

paths of all modes using the Snell’s law. Although this feature cannot predict the flaw response

amplitudes, it is highly useful for predicting ray paths in complex 3D inspection parts.

The flaw scattering models in UTSIM are rather limited. For simple shapes, exact analytical

models based on the SOV-technique can be used. The KA can be used for 3D defects of arbitrary

shape. In the large-flaw model, the flaw geometry is discretized with small triangular elements, and

the KA is applied to compute scattered fields on each triangle individually. The quantity Ã(x, ω),

which is required for computing the integral in Equation (1.1), is determined from the scattered

fields on the flaw surface.

Unlike CIVA, UTSIM outputs the absolute value of the receiver voltage. The user, therefore,

needs to input the system efficiency factor, β(ω), characterizing electro-acoustic transduction. Of-

ten, the system efficiency factor for realistic pulser/receiver settings is determined from a reference

experiment and entered into the software. Alternatively, the system efficiency factor can be defined

by specifying the parameters of a predefined family of functions [13].
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1.4.3 UTDefect

UTDefect is a computer code developed at the Department of Mechanics at Chalmers Univer-

sity of Technology, for UNDE simulation. A software program called simSUNDT interfaces with

UTDefect and provides post-processing capabilities [53]. Similar to UTSIM and CIVA, UTDefect

also relies on field reciprocity to model the received signal. Specifically, the output of the simulation

is the change in an electric field transmission coefficient (as defined by Auld [28]) due to the defect

and is calculated from Auld’s reciprocity equation.

The transducer is modeled by specifying the traction induced by it on the surface of the in-

spection component, which is assumed to be planar. The incident fields inside the component are

computed by considering the surface traction fields as the boundary condition of a half-space elas-

todynamic wave propagation problem [54]. The solutions are obtained analytically by applying the

Fourier transform and enforcing field continuity on the surface [55]. As the fields computed in this

fashion are represented as double integrals, a 2D stationary-phase approximation is performed to

reduce the computation cost [56]. However, the software also allows these integrals to be computed

by numerical methods. Both immersion probes and contact probes can be modeled. The elastic

properties of the inspection components need to be homogeneous and isotropic.

As defect scattering is also modeled using analytical techniques, only defects of a few simple

shapes can be handled. The volumetric defects available in UTDefect include the spherical cavity,

the spherical inclusion, the cylindrical cavity, also called as the side drilled hole (SDH), and the

spheroidal cavity. All volumetric defects are handled using the T-matrix approach. In the T-

matrix method, the incident and scattered fields are first expressed in a spherical wave basis [57],

and the expansion coefficients of one are sought in terms of the other through the unknown T-

matrix. The T-matrix can be obtained in several ways, including the null-field, SOV and integral

equation approaches. SOV is used for finding the T-matrices of spherical and cylindrical defects

[58], whereas the null-field method is used for spheroidal defects [56]. The T-matrix of circular

cracks is determined using the integral equation approach as mentioned below.
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The list of crack-like defects that can be modeled includes the circular crack, the rectangular

crack and the strip-like crack. The circular crack can be open, fluid-filled or partly closed, where

partial closure is modeled as a boundary condition relating the stress to the crack opening displace-

ment (COD) via a proportionality constant [56], as originally proposed in [59]. All crack-like defects

are handled using semi-analytical integral equation approaches. The integral equation is solved by

expanding the COD with basis functions that account for edge singularities. Although such integral

equation solutions exist for all the above mentioned cracks, the T-matrix of the circular crack is also

computed (from the integral equation solution) as it allows the same methods used for spheres and

spheroids to be applied for the crack also in characterizing the coupling to the transducer and the

planar back-wall [56, 60]. For rectangular and strip-like cracks, surface roughness can be prescribed

parametrically. The roughness is modeled as a perturbation of the boundary.

All defects except the SDH can be close to the back-wall of the component, which is assumed

to be parallel to the top (scanning) surface except for strip-like surface breaking cracks, in which

case the back-wall is allowed to be a tilted plane. Recently, a hybrid T-matrix/BEM method has

been developed for scattering from defects close to a non-planar surface [61]. Although this method

builds on the UTDefect models, there seem to be no reports on its implementation in UTDefect

yet. In computational terms, the simplicity of the UTDefect models is derived from the possibility

of obtaining analytical or semi-analytical solutions for scattering from simple shapes. Even for

defects with complex shapes, the T-matrix can be computed numerically via the null-field method,

but the computational complexity of this approach is on a similar level with the numerical methods

applied for solving BIEs. Indeed, for acoustic scattering, it is known that the numerical solution

of a BIE via the Petrov-Galerkin method leads to the same algebraic equations as the null-field

method [62].

1.4.4 IZFP Models

The IZFP ultrasound simulation models were developed at the Fraunhofer Institute of Non-

destructive Testing IZFP [63]. These models are based on the Auld’s reciprocity relationship [13,
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§14.4]. The transducers can be modeled using the generalized point source superposition (GPSS)

method or the Gaussian beam superposition (GBS) method. Both the methods can be applied

to anisotropic materials. In the GPSS method, the transducer field is computed by the numerical

quadrature of a surface integral representation of the displacement. The Green’s functions appear-

ing in the surface integral are approximated with their (point-source) far-field forms, as described

in [64]. In the final form, this method appears like an approximation by superposition of directive

point sources [65]. Transmission through interfaces and scattering by defects can be modeled by

applying the GPSS to similar surface integral representations characterizing these processes. For

computing the scattered fields through such representation integrals, the scattered field on the sur-

face of the scattering object needs to be known. The IZFP models apply the KA for determining

these fields. See [66] for an example on how this is done for voids in general anisotropic media.

In the GBS method, a small number of Gaussian beams are superposed to synthesize the

transducer beam [67, 68]. This makes the method computationally more efficient than the GPSS and

other beam computation methods. The Gaussian beam coefficients in IZFP models are computed

individually for each transducer, assuming a five-beam model. The reference beam profiles that the

superposed Gaussian beam should match are obtained either experimentally or from simulations

[65].

1.4.5 Distributed Point Source Model

Distributed point source (DPS) modeling was proposed by Placko and Kundu [69] first as a

method to model transducer radiation in a fluid. It is very similar to the GPSS method. Indeed, in

its original form, it is equivalent to computing the Rayleigh-Sommerfeld integral for the radiated

pressure field by a numerical quadrature. It consists of approximating the transducer radiation by

a number of point sources of equal amplitude distributed over the face of the transducer.

However, in the modified DPS formulation [70], the amplitudes of the point sources are assumed

to be unknown and are sought by matching the radiated fields to known quantities at a set of test

points, very similar to the approach of the BEM. When the test points are chosen on the transducer
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surface, the approximation of the surface integral with a numerical quadrature makes it difficult to

calculate the fields (at the test point locations) because of the singular nature of the point sources.

To account for this, the point sources are distributed on a plane removed from the transducer face.

This method has been extended to treat transmission at interfaces and scattering from defects

[71, 72]; point sources of unknown amplitudes are placed close to the material interfaces and defect

surfaces, and continuity of the fields is enforced at test points located on these surfaces to determine

the amplitudes of the point sources. DPS models do not simulate electro-acoustic transduction,

and hence, the output in scattering problems can be defined only in mechanical terms, such as for

instance the total force received on the transducer element.

Although the DPS method appears to have been applied to three dimensional scattering prob-

lems [71, 73, 74], since no experimental comparisons are made, its accuracy is still unknown. Par-

ticularly, it remains to be seen how this method compares with the BEM in terms of accuracy since

its computational efficiency (over the BEM) seems to be due to the application of approximations

on some versions of the BEM. Moreover, this method is yet to be extended to three dimensional

defects of arbitrary shape.

1.4.6 Finite Element Method

The finite element method (FEM) is a technique for solving partial differential equations by

partitioning the computational domain into small regions (say, mesh elements). The fields within

each mesh element are assumed to be generated by a finite-dimensional approximation. Specifically,

this is achieved via “local” basis functions— that is, the domains of these functions are restricted

to a few mesh elements over which they approximate the fields. The coefficients of the approxima-

tion (also called as degrees of freedom) are sought using weighted-residual or variational methods

[75, Chap. 2]. Discretization of the domain as mentioned above simplifies the treatment of inho-

mogeneous and anisotropic media. The versatility of the method in handling different materials,

therefore, makes it particularly attractive for ultrasound modeling, which often involves complex

elastic media. Further, the partial differentiation operators yield sparse systems of linear equations,
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which can be solved efficiently. The typical discretization length required for proper convergence

of the method is about one-tenth of the wavelength. For three-dimensional problems, the required

number of degrees of freedom (DOFs) increases rapidly as a function of the domain size. Therefore,

application of this method to ultrasonic scattering in NDE, where defects as large as six times the

shear wavelength (at the highest frequency in the bandwidth) are common, is challenging. Also,

due to the exterior nature of the scattering problem, the simulation domain has to be extended

beyond the defect to model an open region, and unless the extents of this domain are relatively

large, the artificial boundary conditions imposed on it will lead to modeling errors.

In the context of elastodynamics, two broad techniques have evolved for handling large com-

putational domains. Both techniques yield methods that can be efficiently parallelized. The first

technique involves the use of explicit time-marching schemes in conjunction with mass-lumping. As

is well known, explicit-time FEMs require the inversion of the so-called mass matrix for determina-

tion of the DOFs at the new time-step [76]. The ability to diagonalize the mass matrix using the

lumped-mass approximation simplifies the matrix inversion process (see [77] and [78] for an analysis

of convergence rates with the lumped mass approximation in elasticity and magnetohydrodynam-

ics problems). Further, the whole solution process is amenable to efficient parallel computation.

This technique is used in the simulation packages POGO [79], PZFlex (now called OnScale Flex)

[80, 81], ABAQUS/Explicit [82, §2.4.5] [83, §3.5.3], ATHENA3D [45], and CIVA [44, 84–86]. Fur-

ther, ATHENA3D utilizes the fictitious domain method to combine irregular meshes on the defect

surface with a regular mesh implemented outside the defect. With this method, stability can be

ensured by satisfying the CFL condition for the regular mesh [87]. This is a significant improvement

over the other methods, where the small elements that approximate the irregular defect boundary

impose a stringent condition on the time-step via the CFL condition. Additionally, regularity of

the mesh improves efficiency of the method.

The other approach for handling large domains involves the use of the domain decomposi-

tion (DD) technique, where the computational domain is split into (in general, overlapping) sub-

domains. The PDE is solved independently in the sub-domains, with appropriate prescriptions
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in the overlapping regions to obtain the solution over the entire domain. The most popular DD

techniques are the iterative Schwarz methods, which can be viewed as preconditioned fixed-point

iterative methods [88, §1.4]. The corresponding preconditioners are often used with Krylov-type

iterative methods, such as the GMRES or CG algorithms [88, Chap. 3], as they are more efficient

than fixed-point iteration. Therefore, it is common to refer to the DD technique as a precondition-

ing method for iterative solvers. The DD technique is used in the simulation packages COMSOL

[89, p. 1213] [90] and CIVA [85]. Particularly, CIVA uses a macro-element strategy to efficiently

handle parametrized defect shapes, where the interaction between the macro-elements that han-

dle different formulations (acoustic, elastodynamic, etc.) is modeled using the mortar element

DD technique; see [84, 86] for details. Although a DD technique is also adopted in the software

ABAQUS/Explicit [83, §3.5.3], DD in that context refers to parallelization of the explicit-time

solution, which is categorically different from the iterative Schwarz methods mentioned above.

All the aforementioned software packages have found applications in UNDE for modeling various

physical processes. For example, see [91, 92] for studies using POGO, [44, 86] for CIVA, [93] for

PZFlex, [94] for ABAQUS/Explicit, [45, 95] for ATHENA3D, and [96, 97] for COMSOL, to cite a

few.

1.4.7 Boundary Element Method

The boundary element method (BEM) is a numerical method for solving surface integral equa-

tions. Similar to the FEM, it involves discretization of the solution domain (a finite number of

disjoint surfaces for 3D problems) into small regions. The fields within these regions are approx-

imated using local basis functions with unknown coefficients (DOFs). The DOFs are sought via

weighted-residual methods. The BEM is especially well-suited for modeling exterior problems such

as wave scattering since radiation conditions are built into the governing integral equations, which

eliminates the need for artificial boundary conditions. Additionally, since the fields need to be dis-

cretized only on the surface(s) of the scattering object(s), the required number of DOFs increases

much slowly with an increase in the scatterer size, compared to volume discretization methods
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such as the FEM. However, unlike the FEM, BEM discretizations result in dense systems of linear

equations, which cannot be handled as efficiently as sparse systems of the same size.

Specifically, inversion of a dense matrix of size N via standard methods such as the LUD requires

O(N3) operations. Therefore, for large matrices, iterative methods are preferred as they need to

compute only a few matrix-vector products for each iteration, which typically has an operation

cost of O(N2). In the context of the BEM, many fast algorithms for computing matrix-vector

products have been developed to further accelerate the solution process. Among them, the most

popular algorithms are the fast multipole method (FMM), the pre-corrected fast fourier transform

(pFFT) and the adaptive cross approximation (ACA) (see [98] and references therein). These

algorithms do not require explicit computation of the full BEM matrix; only the near-field matrix

elements are explicitly computed and stored. The contribution of the far-field elements to the

matrix-vector product is computed (approximately) on-the-fly during the iterative solution process

using a relatively small set of pre-computed values characterizing the same. This is achieved by

factorization of the kernel functions in the FMM, by low-rank approximation of the far-field matrix

blocks in the ACA, and by projection of sources onto a regular grid in the pFFT.

There are very few direct applications of the BEM for UNDE modeling in recent literature. Some

early work includes the application of BEM for studying elastic wave scattering from inclusions and

cracks. The review papers by Beskos [99, 100] provide a nearly comprehensive list of these studies.

Some notable works are due to Niwa, Budreck, Schafbuch and others [101–103]. For applications

related to guided wave scattering, see [104–107], which were published in the early 2000s. BEM-

based inverse methods for UNDE were developed around the same time by Rus and others [108, 109].

More recently, a fast time-domain BEM was developed for modeling air-coupled ultrasonic testing

[110]. Although, recent applications of the BEM for UNDE modeling are relatively few, the work

on fast BEM solvers for 3D elastodynamics has been progressing steadily [31, 111–113]. This work

will be described in Chapter 5, when fast BEM algorithms for elastodynamics are introduced.
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1.5 Summary and Organization of the Thesis

To summarize, quantitative NDE methods form an important aspect of the damage-tolerance

design principle. Among other things, they support the development of fracture mechanics models

and are required for realizing the full benefits of computational models for crack growth prediction

and stress calculation. The advancement of such quantitative NDE methods, in turn, benefits con-

siderably from the availability of accurate NDE models. This thesis is concerned with bettering

UNDE measurement models by solving the problem of modeling elastic-wave scattering both accu-

rately and efficiently. The primary impediment towards this not the lack of accurate models, but

the computational cost incurred in using them. Indeed, it is for this reason that most simulation

softwares do not handle scattering from arbitrary shaped 3D defects. The only software that does

handle them uses the Kirchhoff approximation to reduce the computational burden.

This thesis presents the development of a fast and memory-efficient BEM for simulating elastic

wave scattering. It is organized as follows. Chapter 2 presents a comprehensive study of the

adequacy of the KA for modeling various practical test scenarios. The results serve as a quantitative

guideline for selecting between the KA and full-wave methods such as the BEM while performing

UNDE simulations. Chapter 3 demonstrates the importance of high-order discretization for making

the BEM viable for practical applications. This is achieved through various numerical examples. In

Chapter 4, a BEM is developed for solving the CFIE formulation through high-order discretization.

Chapter 5 describes the application of the multilevel fast multipole method to this BEM. Chapter 6

describes the irregular frequency problem and demonstrates that the formulation developed in

Chapter 4 is free from this artifact, unlike conventional methods.
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CHAPTER 2. APPLICATION OF FULL-WAVE SCATTERING MODELS

TO BENCHMARK PROBLEMS

This chapter aims to study the proper use-cases of full-wave scattering models within semi-

analytical (composite) UNDE measurement models. A composite UNDE measurement model

wherein wave-scattering is modeled separately from other physical processes is described. Two

different scattering models, namely, the Kirchhoff approximation (KA) and the boundary element

method (BEM), are used within the composite model. This composite model is applied to simulate

benchmark experiments. Two sets of results are obtained separately with the KA and the BEM

while keeping all other elements in the model the same. The results are compared with experimen-

tal data to confirm the validity of the KA under different test scenarios as well as to understand

when full-wave methods such as the BEM are required.

2.1 Introduction

UNDE tests involve ultrasonic phenomena within regions spanning several hundreds of wave-

lengths. At the same time, numerical methods for the exact modeling of ultrasound (as opposed

to approximation methods) require discretization of the computational region on length-scales of

the order of one-tenth of a wavelength for proper resolution of the ultrasonic fields. When such

numerical methods are applied to model a UNDE test, a large number of discretization variables

are required due to the relatively large size of the computational domain. Most UNDE models,

therefore, treat different physical processes such as wave propagation, scattering, etc. separately,

which allows the modeling of some or all of these processes via exact analytical or approximation

methods, making the simulation effort tractable. Such composite models typically comprise three

sub-models, including (a) an ultrasonic beam model to describe the propagation of ultrasonic waves,
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(b) a scattering model to describe the scattering of ultrasonic fields by the defects, and (c) a model

for electro-mechanical transduction.

The Kirchhoff approximation (KA) is a scattering model based on a ray-like approximation

of waves. Similar to the geometrical optics and geometrical elastodynamics models, it works best

in the high-frequency limit. Being an approximation method, it is computationally very efficient.

Specifically, in terms of the computational time and memory usage, it outperforms full-wave nu-

merical methods such as the finite element method (FEM) and the BEM by several orders of

magnitude. Consequently, it is one of the widely used scattering models. Also, as seen from the

survey of simulation softwares presented in Section 1.4, it is currently the only method that can

handle arbitrary shaped 3D defects within UNDE simulation packages.

Due to the ray-like approximation, the KA treats specular reflections from flat surfaces accu-

rately. Its accuracy decreases as the radius of curvature of the scattering surface becomes smaller

and comparable to the wavelength. Notably, it does not model edge diffractions accurately. Further,

secondary reflections and surface waves on defects are not considered in this method [22, Chap. 10].

Although the foregoing limitations of the KA are well-studied and understood, the application of

the KA in UNDE measurement models raises a new question: as the scattering model is only a

part of the UNDE measurement model, one might ask how the limitations of the KA affect the

overall accuracy of the measurement model under various test scenarios. Clearly, the answer would

depend on how sensitive the output of the measurement is to the process of scattering.

In this chapter, we look at three different measurement outputs. The accuracy of the KA in

predicting these three quantities is studied by comparison with experiments under different testing

scenarios. First output is the time-domain waveform of the receiver voltage. As mentioned in the

previous chapter, this waveform is indeed the quantity that is represented in both A- and B-scans.

However, in the C-scan and many other imaging methods, the output of interest is the maximum

value of the amplitude of the receiver voltage pulse. This is the second quantity we consider. The

third quantity is the far-field scattering spectra of the defect, which is obtained by deconvolving the

effects of the transducers and electronics in the system. This parameter is commonly known as the
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scattering amplitude (SA). For defects that are not relatively small, it is not possible to separate

the effects of beam spreading and scattering. Therefore, a quantity analogous to the SA, but which

includes the effects of beam spreading, is considered for relatively large defects.

One may expect to find the KA inadequate in predicting the measurements that are sensi-

tive to the physical processes not fully represented in it. Diffraction from cracks, surface waves,

secondary reflections, etc. are some examples of such processes. We try to confirm these expec-

tations quantitatively by comparing predictions from KA-based models with measurements. Since

any discrepancies observed in the model predictions may include the contributions of experimen-

tal uncertainties, such a comparison will not indicate how well exact scattering models perform

over the KA. Hence, a different set of results are obtained by replacing the KA with a full-wave

scattering model while keeping all other elements in the composite model the same. A full-wave

model is defined as any model that solves the complete wave equations. The particular full-wave

scattering model considered here is based on the solution of a boundary integral equation (BIE) via

the Nyström method (NM), which is a boundary-element-type numerical method [114, 115]. Com-

parison of the NM-based model predictions with the measurement data will indicate the potential

performance-gains of full-wave models over the KA.

Some studies have been conducted previously for the experimental verification of UNDE mea-

surement models [27, 47, 63, 116–120]. In [27, 63, 116–119], UNDE models were applied to simulate

some benchmark problems proposed by the World Federation of NDE Centers (WFNDEC). Experi-

mental data for these problems were also provided by the WFNDEC. The scattering models applied

in these studies include the KA and full-wave analytical methods. As only few scattering problems

admit exact analytical solutions, complex defects were treated only using the KA in these studies.

Predictions of full-wave scattering models known as MOOT and T-matrix method were compared

with measured data in [47]. A scattering model based on the BEM was used for the prediction

of experimental pulse-echo signals from spherical voids or inclusions in [120]. Both [47, 120] were

restricted to defects of simple shapes only.
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In this chapter, composite UNDE models based on the KA and the NM are applied to the

WFNDEC benchmark problems from the years 2004 and 2005. These problems include various

pulse-echo immersion tests with standard scatterers such as flat bottomed holes, spherical voids,

etc. in solids. Only echos resulting from longitudinal waves were considered in the simulations,

although the simulation model has no restrictions on the type of wave modes. Experimental data

for the benchmark problems were obtained from the WFNDEC archives [121]. The UNDE mea-

surement model used in the simulations follows the development in [22]. This model has three

quantities that are derived independently of the scattering problem: the system efficiency factor,

which characterizes the electro-acoustic transduction process, and the velocity diffraction coeffi-

cients of the transmitting and receiving transducers. The system efficiency factor corresponding to

every measurement was extracted from a reference measurement performed with the same pulser

and receiver settings as used in the original experiment. The velocity diffraction coefficients were

calculated either using the multi-Gaussian beam model [22, 122] or by evaluating the Rayleigh-

Sommerfeld integral for transducer radiation under the paraxial approximation as described in [13,

Chap. 8]. In the following sections of this chapter, a description of the composite UNDE model

is given first. Then, the methods employed to compute the elements of the composite model are

described, which is followed by a presentation of the simulation results.

2.2 Measurement Model for Immersion Testing

2.2.1 Composite Measurement Model

A composite semi-analytical model is used for computing the receiver voltage. This model is

based on a modification of the electromechanical reciprocity relation derived by Auld in [28]. The

original version relates the change in the electric field transmission coefficient (of the fundamental

mode in the coaxial line connected to the receiving transducer) due to the presence of a flaw, with

the displacement and traction fields on a surface enclosing the flaw. A similar relation for the re-

ceiver voltage was derived by Schmerr [123] from mechanical reciprocity principles by assuming the

receiver voltage to be proportional (for a fixed frequency) to the average pressure on the receiving
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transducer. The model used here for computing the receiver voltage is based on a simplification of

this relationship via paraxial approximations and follows the treatment in [22, §11.1]. Therefore,

the reader may refer to [22] for a complete description and derivation of the model; it is described

here in only as much detail as necessary for understanding the results of the simulations.

Consider an immersion testing measurement with two piston-like transducers: one transmitter

and one receiver. The specimen under test is assumed to be a linear elastic material with homoge-

neous and isotropic elastic properties except for the presence of a few defects. A defect is defined as

any region within the specimen wherein elastic material properties are different from those of the

specimen. We refer to the normal velocity on the surface of a transducer, generated by its excitation

alone (that is, without the echoes) as the excitation amplitude. Let the excitation amplitude of

the transmitting transducer be vT , which is, in general, allowed to be a function of the frequency.

Also, let the receiving transducer be unexcited. This situation (state 1) is depicted in Figure 2.1a.

Assume that we are interested in finding the response of a defect bounded by a surface Sf .

For the purpose of modeling, another scenario as shown in Figure 2.1b is considered. In this

state (state 2), the receiving transducer is fired with a unit excitation amplitude, and the defect

of our interest is absent. That is, within the surface defined by Sf , the elastic properties are same

as those of the specimen. Although only one defect is shown in Figure 2.1a, if multiple defects

are present in the specimen, all the defects whose response is not desired should be assumed to

be present in both the states. The receiver voltage in state 1 constitutes the contribution of the

wave interactions that do not involve the flaw as well as those that do. The latter component is

the difference between the receiver voltages observed with and without the flaw. This component,

defined as the flaw voltage response, can be expressed in terms of the velocity and traction fields on

the surface Sf in the states 1 and 2. This relation is based on some assumptions on the nature of

the water-air and water-tank interfaces, all of which generally hold true. Assuming that the fields

are time-harmonic with the factor e−iωt, the result is as follows [22, §11.1]

∆VR(ω) =
β(ω)

2ρ1c1SRvT

∫
Sf

(
t(1) · v(2) − t(2) · v(1)

)
dS (2.1)
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(a) State 1

(b) State 2

Figure 2.1: Schematics of the two states considered for modeling the flaw response. State 1 is the

conventional immersion testing experiment, reproduced from Figure 1.1. In state 2, the defect is

absent, and the receiving transducer is excited.
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where ∆VR(ω) is the flaw voltage response, v(j) and t(j) are the velocity and traction fields, respec-

tively, in the state j (j = 1, 2); β(ω) is called the system efficiency factor and depends only on the

spectrum of voltage excitation in state 1 and the properties of the transducers, cables and electronic

components in the system; ρ1 is the mass density of water; c1 is the wave speed in water; SR is the

area of the face of the receiving transducer. The traction fields are defined with respect to the unit

normal vector directed away from the defect (n̂). That is, t(j) = n̂ · τ(j), with τ(j) representing the

stress fields in state j. In the above equation, the fields v(1) and t(1) include the contributions of

the respective fields radiated by the transmitting transducer (incident fields) as well as those that

are generated by scattering from the defect (scattered fields). Therefore, these fields have to be

calculated by solving the elastic wave scattering problem. It may not be immediately evident that

Equation (2.1) is same as that in [22, §11.1]. The only actual difference is that a unit excitation

amplitude is assumed in state 2 here. There is no loss of generality due to this assumption as

the fields v(2) and t(2) are proportional to the excitation amplitude. Other apparent differences

are due to the substitution of the quantities s(ω) (system function) and ZT ;a
r (acoustic radiation

impedance) appearing in [22, §11.1] in terms of the system efficiency factor and other fundamental

parameters (see [22, §7.2]).

The fields v(2) and t(2) are the incident fields generated at the surface Sf when the receiving

transducer is excited with a unit velocity amplitude. Assuming that the surface Sf is located

well within the specimen, these fields can be decomposed using the paraxial approximation. This

assumption is valid for all the benchmark problems considered in this chapter. Applying the paraxial

approximation to decompose the incident fields in state 2 is physically equivalent to applying it

to the fields received at the receiving transducer due to scattering by the defect in state 1. As

the results shown in this chapter are concerned with only longitudinal waves in the specimen,

the formulation below will be restricted to this condition. Its extension to other wave modes is

straight-forward. Under the paraxial approximation, v(2) can be expressed as

v(2)(x, ω) = V̂ (2)(x, ω) d(2) exp
[
ikp2e

(2) · x
]

(2.2)
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where d(2) is a unit vector in the direction of polarization of the wave, kp2 is the longitudinal wave

number in the specimen and e(2) is the unit vector in the direction of wave propagation. The term

V̂ (2)(x, ω) is the diffraction correction coefficient. It can be calculated analytically for a circular

piston transducer, though we use a different approach in the simulations, as mentioned later. The

vector x represents the coordinates relative to a fixed coordinate system. Since most beam models

naturally describe the transducer radiation relative to the axis of the beam, a convenient choice for

the origin of the coordinate system is any point on this axis. If the origin is chosen away from the

transducer and close to the defect, as is usually done, the diffraction correction factor will include

a factor describing the phase accrued by the beam due to propagation from the transducer to the

origin. The stress fields corresponding to the velocity fields in Equation (2.2) can be calculated

from the stress-strain constitutive relation in the specimen. For a linear elastic material, the stress

tensor (τ) is related to the Cauchy strain tensor (ε) by the fourth-order stiffness tensor (C) as

follows

τ = C : ε. (2.3)

The double dot product operator (:) is defined in the Einstein summation convention by contraction

over the last two indices as follows

τjk = Cjklmεlm, (2.4)

where Cjklm , τjk and εlm (for j, k, l,m = 1, 2, 3) are the components of C, the stress tensor and the

strain tensor, respectively. For an isotropic material, this relation further simplifies to

τ = C : ∇u, (2.5)

Using this constitutive equation, we obtain the stress field τ(2) corresponding to the velocity field

v(2)(x, ω) as follows

τ(2) = −C :
∇v(2)

iω
. (2.6)
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Ignoring spatial variations in the diffraction correction coefficient while taking the derivative, we

get

τ(2) = − 1

cp2
C : (e(2)d(2))V̂ (2)(x, ω) exp

[
ikp2e

(2) · x
]

(2.7)

where the dyadic notation is assumed and cp2 is the longitudinal wave speed in the specimen.

Substituting Equations (2.2) and (2.7) in (2.1) yields

∆VR(ω) =
2πρ2c

2
p2β(ω)

(−iω)ρ1c1SR

∫
Sf

V̂ (2)(x, ω) Ã(x, ω) exp
[
ikp2e

(2) · x
]

dS, (2.8)

with Ã(x, ω) given by

Ã(x, ω) =
1

4πρ2c2
p2

[
t̃

(1) · d(2) +
1

cp2
(ṽ(1)n̂) : C : (e(2)d(2))

]
(2.9)

and

t̃
(1)

=
−iωt(1)

vT
and ṽ(1) =

−iωv(1)

vT
(2.10)

In the above equations, ρ2 is the mass density of the specimen. Using the explicit representation

of the stiffness tensor in terms of the Lamé constants λ and µ, the term Ã(x, ω) can be further

simplified as follows

Ã(x, ω) =
1

4πρ2c2
p2

[
t̃

(1) · d(2) +
λ

cp2
n̂ · ṽ(1)d(2) · e(2) +

µ

cp2
n̂ ·
(
d(2)e(2) + e(2)d(2)

)
· ṽ(1)

]
(2.11)

As mentioned before, the fields ṽ(1) and t̃
(1)

are obtained by solving the scattering problem. In

the simulations presented here, the BEM and KA scattering models were used for this purpose. For

both methods, it is necessary to compute the incident fields radiated by the transmitting transducer

first. As in the case of state 2, the paraxial approximation is applied for decomposing these incident

fields as follows

v(1);inc(x, ω) = vT V̂
(1)(x, ω) d(1) exp

[
ikp2e

(1) · x
]

(2.12)

where d(1) is a unit vector in the direction of polarization of the wave, e(1) is the unit vector in the

direction of wave propagation and v(1);inc is the incident field in the scattering problem. A further
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approximation is possible if we assume that the fields generated due to the scattering of an incident

wave in the form of Equation (2.12), are V̂ (1)(x, ω) times those generated by the scattering of a

plane wave of amplitude vT . The differences between the solutions computed with and without this

approximation indicate that the approximation holds true in most cases considered here. Therefore,

we can rewrite Equation (2.8) as follows

∆VR(ω) =
2πρ2c

2
p2β(ω)

(−iω)ρ1c1SR

∫
Sf

V̂ (1)(x, ω) V̂ (2)(x, ω) Ã(x, ω) exp
[
ikp2e

(2) · x
]

dS (2.13)

where Ã(x, ω) is still given by Equation (2.9), but the fields ṽ(1) and t̃(1) in Equation (2.10) must

be considered as those corresponding to the scattering of a plane wave of amplitude vT . When the

defect size is small, such that V̂ (1)(x, ω) and V̂ (2)(x, ω) do not vary significantly over the surface of

the defect, these two terms can be approximated by their value at a fixed point near or inside the

defect and factored out of the integral. We call this the small-flaw approximation, and the resulting

equation for the flaw voltage response, which is shown below, is known as the Thompson-Gray (TG)

model [47]:

∆VR(ω) =
2πρ2c

2
p2β(ω)

(−iω)ρ1c1SR
V̂ (1)(x0, ω) V̂ (2)(x0, ω)

∫
Sf

Ã(x, ω) exp
[
ikp2e

(2) · x
]

dS (2.14)

where x0 is some fixed point near/inside the defect and is generally taken to be its geometric center.

The integral in the above equation can be shown to be related to the far-field scattering amplitude

(SA) (evaluated in the angular direction of the receiving transducer) of the defect, which is defined

with respect to the scattering of a plane wave of velocity amplitude −iω [22, §11.1]. To be more

precise, the integral equals the projection of the SA along the direction opposite to the vector d(2).

2.2.2 Beam Model

In the simulations where the TG model was not used, the diffraction coefficients were calculated

using the multi-Gaussian (MG) beam model [22, §12.2][122]. A more accurate and computationally

intensive beam model was used for evaluating the diffraction coefficients in the TG model since the

evaluation needs to be done only at a single point in that case. This accurate beam model is based
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on plane-wave expansion of the spherical waves generated by the point sources in the Rayleigh-

Sommerfeld integral. The resulting integrals are evaluated by applying the stationary-phase and

paraxial approximations as described in [13, Chap. 8].

2.2.3 Extraction of System Efficiency Factor

The system efficiency factor, β(ω), depends on the properties of the transducers and the elec-

trical/electronic components in the system. Inherently, it also depends on the pulse generator and

receiver settings. For pulse-echo measurements, it can be extracted from a calibration experiment

performed with the same pulse-generator and receiver settings as used in the original experiment.

Therefore, every benchmark experiment dataset provided by the WFNDEC is accompanied by a

corresponding calibration dataset. The system efficiency factors were extracted from these calibra-

tion datasets as explained below.

The calibration measurements involve positioning the transducer above any block of elastic

material, and measuring the pulse-echo from its front surface at normal incidence. For spherically-

focused transducers, the distance between the transducer and the front surface is equal to the

effective geometrical focal length. That is, the transducer is positioned such that it is focused on

the surface as shown in Figure 2.2a. For planar transducers, the transducer is positioned such that

the reflector lies in its far-field as shown in Figure 2.2b. The voltage measured in these scenarios

can be expressed analytically with the system efficiency factor as the only unknown quantity in the

expression. For spherically-focused transducers, the receiver voltage in the calibration measurement

is given by [22, §8.13]

Vf (ω) = −β(ω)Rp e
−2[α(ω)−ik1]DH∗

(
k1a

2

2D

)
(2.15)

where Rp is the pressure-field reflection coefficent at the interface between water and the block, α(ω)

is a frequency-dependent coefficient characterizing the attenuation in water, k1 is the wavenumber

in water, D is the focus distance of the transducer, and a is the radius of the radiating face of the

transducer. The function H is a correction factor for beam spreading, and is given by

H(x) = 2− 2eix
[
J0(x)− iJ1(x)

]
(2.16)
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(a) Spherically focused transducer

(b) Planar transducer

Figure 2.2: Schematics of calibration measurements for spherically focused transducers and planar

transducers.
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for any real number x, and Jk is the Bessel function of order k. The superscript (∗) over H

represents the operation of taking the complex conjugate of H. If the voltage spectrum is known

from the calibration experiment, β(ω) can be extracted using a Wiener-deconvolution-type division

process as shown below [13, §14.1.3]

β(ω) =
Vf (ω)

B(ω)

( |B(ω)|2
|B(ω)|2 + ε21B

2
max

)
(2.17)

where B(ω) denotes all factors on the right hand side of Equation (2.15) excluding β(ω), Bmax is

the maximum value of |B(ω)| over all frequencies, and ε1 is a small positive number. For a planar

transducer, the corresponding expression for the receiver voltage is [124] [13, §8.13]

Vp(ω) = β(ω)Rp e
−2[α(ω)−ik1]DH

(
k1a

2

2D

)
(2.18)

where β(ω) now represents the system efficiency factor corresponding to the planar transducer. As

in the case of the spherically focused transducer, the system efficiency factor can be extracted from

the above equation by Wiener deconvolution.

To understand how the choice of ε1 is made, consider Vf (ω) to be a sum of the true signal and

some noise. Then,

Vf (ω) = B(ω)βt(ω) + Vn(ω) (2.19)

where Vn(ω) is the Fourier spectrum of the measured (time-limited) noise and βt(ω) is the true

value of the system efficiency factor. Therefore, the system efficiency factor has to satisfy the

following implicit relationship

βt(ω) =
Vf (ω)

B(ω) + Vn(ω)
βt(ω)

(2.20)

At frequencies where |B(ω)| is much greater than |Vn(ω)|/|βt(ω)|, the system efficiency factor is

obtained to a good approximation by dividing Vf (ω) by B(ω) as shown below

βt(ω) ≈ Vf (ω)

B(ω)
(2.21)

The typical shape of the magnitude of the system efficiency factor is shown in Figure 2.6. It

peaks at a frequency, defined as the center frequency, and decreases on either side away from it.
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The magnitude of the system efficiency factor at the center frequency is typically much larger

than the noise value. Therefore, the approximation (2.21) is valid at the center frequency. As we

move away from the center frequency, the magnitudes of both βt(ω) and B(ω) decrease usually,

and beyond some point, the foregoing approximation becomes invalid. In this region, the values

of the system efficiency factor extracted according to (2.21) are unreliable and uninformative.

As will be mentioned later, the definition of bandwidth depends on this observation. When the

system efficiency factor extracted in this fashion is used in pulse-echo calculations, the effect of the

unreliable values is negligible provided their magnitudes are small. To ensure this, the division in

Equation (2.21) has to be stabilised such that when |B(ω)| is very small, the extracted values of

β(ω) will not have large magnitudes. The division process shown in Equation (2.17) achieves this

purpose. The parameter ε1 in Equation (2.17) is chosen such that the extracted value of β(ω) does

not have large values except in the frequency range close to the center frequency.

As an example, typical magnitudes of B(ω) and β(ω) are shown in Figure 2.6. Since the

magnitude of B(ω) goes to zero with a decrease in the frequency (or equivalently, the wavenumber),

the magnitude of β(ω) peaks close to the origin. The value of ε1 was chosen appropriately to keep

this peak in β(ω) small. It is important to distinguish between the sensitivity of the extracted β(ω)

to ε1 and its partial unreliability due to noise. For example, the effect of noise may be considered

high when the normalized magnitude of β(ω) is below 0.5. According to the figure, this corresponds

to the (normalized) wavenumbers below 1 and above 2.2. However, the magnitude of B(ω) is not

small except for wavenumbers below 0.25. Therefore, β(ω) is not very sensitive to the value of ε1

for wavenumbers above 0.25, though its values may be unreliable due to the effect of noise.

2.2.4 Scattering Model

Two different scattering models are used in the simulations, as mentioned in Section 2.1. The

full-wave scattering model is based on the solution of a BIE via the Nyström method (NM). This

method is explained in detail in [30, 115]. A summary is given in Section 3.2. The second scattering

model is the KA. A brief overview of this method is given in [125, §2.2.2]. Formulas for computing
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the far-field SA using the KA are available in [13, §10.4]. For void-like defects, these relations can

be further simplified [22, §10.2]. Further, for voids of simple shapes, such as spherical cavities and

circular crack-like voids, the far-field SA can be expressed in a closed-form under the KA [126].

Appendix A lists some formulas for spherical scatterers, which will be useful for inclusion-type

flaws.

2.3 Simulations of Benchmark Problems

2.3.1 Benchmark Problems of 2004

The benchmark problems from the year 2004 cover three standard defects: the spherical cavity,

the flat-bottomed hole (FBH) and the side-drilled hole (SDH). The length of the SDH in these

problems is larger than the beamwidth of the transducer, which typically spans over tens of wave-

lengths. Therefore, the NM would require a large number of discretization points to cover the entire

length of the SDH. As this discretization condition exceeds what could be handled with our compu-

tational resources, only the spherical cavity and the FBH were simulated. Results for both planar

and spherically-focused transducers are shown for these two defects. Interestingly, an approximate

relation exists between the far-field SAs of finite-length and infinte-length SDHs when insonified by

a plane wave traveling perpendicular to the SDH axis. The fields in the former case are assumed

to not have any variations out of the plane of incidence in deriving this relation. Naturally, this

implies that edge-effects at the ends of the SDH are neglected. Since the transducer beam in the

benchmark problems is paraxial near the SDH and attenuates sufficiently ahead of its edges, this

approximation holds good for these cases. Consequently, the far-field SA of a finite-length SDH

can be derived from a two-dimensional scattering problem for a circular hole. This technique has

been used to compare the predictions of an exact analytical scattering model with experimental

data in [27, 116, 118]. The same method can be followed to get the NM solution too, but the

NM simulation code used here was implemented only for three-dimensional scattering problems; its

reduction to two dimensions is not possible by numerical manipulation due to the singular nature

of the kernel functions in the underlying BIEs.
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Figure 2.3: Schematic of pulse-echo measurement of a fused-quartz specimen with a spherical cavity.
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Figure 2.4: Measured and simulated pulse-echo signals for spherical cavity with planar transducer.
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2.3.1.1 Spherical Cavity in a Fused-Quartz Specimen

Figure 2.3 shows the schematic of the spherical cavity benchmark problem. The specimen

under inspection is a fused-quartz block. Radius of the spherical cavity (a) is 0.346 mm. Pulse-

echo measurements are obtained with both planar and spherically-focused transducers. The center

frequency of both transducers is about 5 MHz. The mass density, the longitudinal and shear wave

speeds of the block are 2200 kg/m3, 5969.4 m/s and 3774.1 m/s, respectively. The distances D1

and D2 are 50.8 mm and 19.63 mm, respectively, for both planar and focused-transducer tests.

Other test parameters relevant for modeling are mentioned in [121].

At the center frequency of the transducer, the wavelength of the longitudinal wave in the quartz

block is 1.19 mm. Therefore, the diameter of the flaw is about half the longitudinal wavelength.

The diffraction coefficient V̂ (1)(x, ω) due to radiation from the planar transducer was calculated

in the region near the defect using the MG beam model. The variation of its magnitude over the

surface of the spherical defect was found to be small. This is to be expected as the size of the

sphere is smaller than the wavelength. Hence, pulse-echo signals were simulated using the TG

model according to Equation (2.14). Specifically, the frequency response obtained from Equation

(2.14) was converted to the time-domain using the inverse discrete Fourier transformation. As

mentioned earlier, the system efficiency factor in Equation (2.14) was extracted from reference

measurement data according to Equations (2.17) and (2.18). The parameter ε1 in Equation (2.17)

was set to 0.03. Figure 2.4 shows the measured and predicted pulse-echo signals from the spherical

void for the planar transducer.

The observed pulse-echo signal includes the leading-edge pulse as well as the contribution of

the creeping wave that travels along the surface of the sphere [127]. The leading-edge pulse is the

reflection from the point at which the wave contacts the sphere first. The creeping wave is a surface

wave initiated at the boundary of the insonified and non-insonified (dark) regions. It travels along

the surface of the sphere in the dark region and radiates away from it along the way. When it

reaches the boundary of the insonified and the dark regions, it radiates in the direction opposite to

the incident wave, which causes a second pulse in the receiver voltage. Due to the relatively small
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size of the sphere in this benchmark problem, the contribution of the creeping wave overlaps with

the leading-edge pulse. The NM, being a full-wave method, predicts the contribution of both the

pulses accurately. The KA prediction also has two overlapping pulses: one from the leading-edge

and another from the discontinuity between the insonified and dark regions. The latter is an artifact

of the KA model. Besides, the KA does not model the creeping wave, which is another reason for its

deviation from the measured signal. Further, in the KA prediction, the leading part of the signal,

which is attributed primarily to the leading-edge pulse, also seems to be in slight disagreement.

This is due to the small size of the defect; the KA, being a high-frequency approximation method,

becomes progressively less accurate as the radius of curvature of the reflecting surface becomes

smaller and comparable to the wavelength.

Table 2.1: Pulse-echo amplitudes (in mV) for the spherical cavity inspection with planar transducer.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.01 2.113 2.161 2.323 2.27 9.94

0.03 2.113 2.159 2.321 2.18 9.84

0.09 2.113 2.198 2.304 1.42 9.04

A2

0.01 2.180 2.216 2.411 1.65 10.60

0.03 2.180 2.214 2.413 1.56 10.69

0.09 2.180 2.198 2.393 0.83 9.77

Next, the amplitudes of the pulse-echo signals are compared. Two different definitions of the

amplitude are considered: one is the maximum of the absolute value of the voltage signal, defined as

A1, and another is the maximum of the envelope of the voltage signal, defined as A2. The envelope

is defined as the magnitude of the analytic representation of the voltage signal obtained from the

envelope function in MATLAB R© [128]. In both amplitude definitions, the maximum is taken over

time. Uncertainty due to the ε1 parameter in Equation (2.17) was taken into account by calculating

the amplitudes for three different ε1 values, including 0.01, 0.03 and 0.09. More explicitly, three

different system efficiency factors were obtained based on the three ε1 values, and the flaw response

in Equation (2.14) was calculated for the three different system efficiency factors. The results are
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shown in Table 2.1. The NM and KA have an error of about 1% and 10%, respectively, for both

the amplitude definitions.

As mentioned earlier, the integral in Equation (2.14) is related to a projection of the SA. For

brevity, it will be referred to as the SA itself. This quantity, represented as A(ω), is calculated

for both NM and KA as a function of the frequency (equivalently, the wavenumber) and compared

with the measurement in Figure 2.5. The measured SA was computed by inverting Equation (2.14)

in a way similar to the extraction of the system efficiency factor. Considering Ae(ω) as the SA

corresponding to the measurement, the inversion process is expressed as follows

Ae(ω) =
∆VR(ω)

B̃(ω)

(
|B̃(ω)|2

|B̃(ω)|2 + ε22B̃
2
max

)
(2.22)

where ∆VR(ω) is the measured flaw response and B̃(ω) is the product of all the terms on the right

hand side of (2.14) except the SA. The parameter ε2 is a small positive number, which is in general

different from the parameter ε1 used in the extraction of the system efficiency factor. The measured

SA was extracted for three different values of ε1 and ε2, including 0.01, 0.03 and 0.09, leading to

nine combinations. The result for ε1 = ε2 = 0.03 is considered as the nominal SA. The normalized

magnitude of this quantity is represented by the continuous line in Figure 2.5. As ε1 and ε2 are

varied within the given set of values, the magnitude of the extracted SA varies. The shaded region

represents the limits of this variation.

From Equations (2.17) and (2.22), we should expect to see large variation in the extracted SA at

frequencies where either |B(ω)| or |B̃(ω)| is small. The normalized values of these two quantities are

plotted in Figure 2.6. The plot of B̃(ω) corresponds to ε1 = 0.03. The corresponding plot of β(ω)

is also shown. We observe that the normalized magnitude of B̃(ω) is lower than that of B(ω) in

most of the frequency band away from the center frequency. Therefore, the boundaries demarcating

the frequency ranges with large and small sensitivities can be discerned from the values of B̃(ω).

Roughly speaking, on either side of the center frequency, these boundaries occur at frequencies

where the normalized value of |B̃(ω)| goes to 0.5 (-6 dB).

However, as mentioned in Section 2.2.3, the bandwidth limits are defined according to the

reliability and not the sensitivity of the extracted values. Since the values of |β(ω)| less than half of
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Figure 2.5: Measured and simulated scattering amplitudes of a spherical void. Measurement curve

is extracted from planar transducer measurement.
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Figure 2.6: Normalized magnitudes of B(ω), B̃(ω) and β(ω) for spherical void with planar trans-

ducer. Each curve is normalized by its maximum value in the given frequency range. The plots of

β(ω) and |B̃(ω)| correspond to ε1=0.03.
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its maximum value (across all frequencies) are considered unreliable, the bandwidth limits are set

accordingly. This choice agrees with the bandwidth definition in earlier works [129, §5.3]. Similarly,

scattering amplitudes extracted according to Equation (2.22) are also unreliable if the extracted

values are very small. However, this is not taken into account in the bandwidth definition and has

to be kept in mind while interpreting Figure 2.5. Since the shape of |β(ω)| matches that of |B̃(ω)|,

the bandwidth limits appear to demarcate regions with small and large sensitivities. However, this

is incidental and is not true in general as illustrated by some examples shown later.

Within the bandwidth, the NM result agrees well with the measurement. The minor difference

from measurement is primarily due to uncertainties in the measured voltages and extracted model

parameters (wave speed, attenuation constant, etc.), and to a lesser extent due to approximations

in the TG model (small-flaw approximation, plane-wave assumption, etc.) and the beam model

because the conditions required for these approximations seem to be more or less valid. The KA

prediction is slightly away from the measurement due to the relatively small size of the sphere,

which is evident from the values of kp2a in the given bandwidth range. The KA would agree well

with the NM for kp2a� 1, except for the contribution of the creeping wave, which is not included

in the KA. For high frequencies out of the bandwidth, the SA extracted from measurement seems

to diverge from the NM. This is due to the effect of the ε2 parameter. Indeed, for ε2 values much

closer to zero, the measured SA lies above the NM curve.

Table 2.2: Pulse-echo amplitudes (in mV) for spherical cavity inspection with focused transducer.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.01 8.906 8.613 9.349 3.29 4.97

0.03 8.906 8.604 9.340 3.39 4.87

0.09 8.906 8.683 9.262 4.3 4

A2

0.01 9.123 8.774 9.534 4.40 3.88

0.03 9.123 8.765 9.524 4.50 3.77

0.09 9.123 8.683 9.437 5.40 2.82

The above procedure was repeated for the spherically-focused transducer case. The effective

focal distance of the transducer in water is 172.9 mm. Other details relevant for modeling are
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Figure 2.7: Measured and simulated pulse-echo signals for the spherical void with focused trans-

ducer.
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Figure 2.8: Measured and simulated scattering amplitudes of the spherical void. Measurement

curve is extracted from focused transducer measurement.



www.manaraa.com

46

available in [121]. The system efficiency factor was extracted from Equation (2.15) instead of

(2.18). The three measurement outputs are shown in Figures 2.7, 2.8 and Table 2.2. The results

are similar to the planar transducer case with one exception; the pulse-echo amplitudes predicted

by the KA are closer to the measurement, seemingly indicating the KA to be better than the

NM. However, the full pulse-echo signals in Figure 2.7 give a different picture. The NM prediction

matches the measurement much better than the KA. Indeed, in the leading part of the signal, the

NM prediction is more or less exact. However, as the signal amplitude peaks closer to its tail,

the maximum amplitude predicted by the NM differs more significantly from the measurement. In

contrast, the KA prediction incidentally matches the measured signal near the amplitude peak.

2.3.1.2 FBH in a Steel Specimen

Figure 2.3 shows the schematic of the FBH benchmark problem. The specimen under inspection

is a steel block. The FBH is a cylindrical hole with length much larger than the radius. The specific

FBH considered here has a radius (a) of 1.191 mm. Similar to the spherical cavity problem, pulse-

echo measurements are obtained with both planar and spherically-focused transducers. The center

frequency of both transducers is about 5 MHz. The mass density, the longitudinal and shear wave

speeds of the block are 7860 kg/m3, 5940 m/s and 3230 m/s, respectively. The distances D1 and D2

are 50.8 mm and 25.4 mm, respectively, for both planar and focused-transducer tests. The length of

the FBH is not specified in the benchmarks as the reflections from its far-end are ignored. However,

a finite-length needs to be assigned for applying the NM scattering model. For this purpose, the

length is taken to be five times the radius. This ensures proper time separation between the

leading and far-end reflections such that the former can be extracted from the combined signal by

time-gating.

The diameter of the FBH corresponds to about two longitudinal wavelengths at the center fre-

quency. Therefore, variations in the beam shape over the front surface of the FBH are higher than

in the case of the spherical cavity considered earlier. Figure 2.10 shows the magnitude of the diffrac-

tion coefficient of the planar transducer radiation on the front surface of the FBH. The horizontal
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Figure 2.9: Schematic of pulse-echo measurement of a steel specimen containing an FBH.

-1.2 -0.8 -0.4 0 0.4 0.8 1.2

R (mm)

0

0.5

1

1.5

2

2.5

3

N
o
rm

a
li

z
e
d
 D

if
fr

a
c
ti

o
n
 C

o
e
ff

ic
ie

n
t

4.5 MHz

6.5 MHz

Figure 2.10: Magnitude of the diffraction coefficient corresponding to the planar transducer at the

surface of the FBH.
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axis represents points on a line passing through the center of the face, with R = 0 corresponding

to the center. This figure completely characterizes beam variations over the front-surface because

of the underlying axial symmetry, which is also partially represented in the figure. The two plotted

curves correspond to the center frequency and the frequency at the upper bandwidth limit. Both

plots are normalized by the excitation amplitude of the transducer. We recall that the TG model

approximates the diffraction coefficients with their values at a fixed location on/near the flaw. If

this location is chosen as the center of the front surface of the FBH, the diffraction coefficients will

be larger than their true values, except at the center. Therefore, this approximation may lead to

larger pulse-echo amplitudes than measurement in the model predictions.

Indeed, the pulse-echo signals simulated according the TG model in Equation (2.14) are in

agreement with this conclusion as shown in Figure 2.11. The signals of both the models are shifted

by 0.053 µs to match their peaks with the measured signal. To be sure, the phase variations in the

diffraction coefficients also have to be considered to understand the effect of approximations in the

TG model. In fact, as shown later for the focused transducer case, the TG model predictions appear

to be in good agreement with the measurement despite similar variations in the magnitudes of the

diffraction coefficients over the FBH surface. This difference between the planar and the focused

transducer cases is explained, therefore, by the phase variations of the diffraction coefficients.

Table 2.3: Pulse-echo amplitudes (in mV) for the FBH inspection with planar transducer.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.01 3.08 3.666 3.423 9.29 11.1

0.03 3.08 3.363 3.420 9.19 11.0

0.09 3.08 3.339 3.395 8.41 10.2

A2

0.01 3.170 3.457 3.520 9.05 11.0

0.03 3.170 3.454 3.517 8.96 10.9

0.09 3.170 3.429 3.491 8.17 10.1

As the reflection from the front-surface is highly specular, the KA pulse-echo prediction coincides

with that of the NM. The discrepancy between the models in the tail region of the pulse is due to the

small contribution of surface waves excited on the front-surface of the FBH. Both model predictions
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Figure 2.11: Measured and simulated pulse-echo signals for the FBH with planar transducer.
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Figure 2.12: Measured and simulated scattering amplitudes of the FBH. Measurement curve is

extracted from planar transducer measurement.
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can be improved by relaxing the approximations made in deriving the TG model. Specifically,

two different approximations were made in going from Equation (2.8) to (2.14) through Equation

(2.13). First is the assumption that the scattered fields due a quasi-plane wave of the form (2.12)

are obtained by multiplying the diffraction coefficient with those generated by the scattering of

a plane wave of velocity amplitude vT . This allows the incident-wave in the scattering problem

to be replaced by a plane-wave. Therefore, this approximation will be called as the plane-wave

assumption. The second approximation is the small-flaw assumption. Both the scattering models

can be applied to simulate pulse-echo signals according Equation (2.13), that is, by relaxing only

the small-flaw assumption. Due to the specular nature of the scattering, their predictions should

be more or less same. However, only the NM can be applied for computing Equation (2.8) as the

KA cannot handle scattering due to non-plane incident waves. The KA prediction corresponding to

Equation (2.13) showed marginal improvement compared to Equation (2.14). Therefore, the error

in the TG model is mostly explained by the plane-wave assumption.

The foregoing observation can be confirmed by applying the NM to compute (2.8). This NM

result agrees well with the measurement except for an artifact which can be traced to a so-called

irregular frequency problem in the BIE underlying the NM. Therefore, this result will be presented

in Chapter 6, where the irregular frequency problem is discussed in detail. In short, the irregular

frequency problem manifests as sharp peaks in the values of the integrals in Equations (2.8), (2.13)

and (2.14) around certain frequencies. If the variation of the integral as a function of frequency is

relatively smooth, this effect can be smoothed out by interpolation. This is true for the integral

in Equation (2.14). Still a weak sign of the peaks in the frequency domain signal can be observed

in the time domain signal derived from it; see the ripples arriving ahead of the pulse in Figure

2.11. This effect is exacerbated for the integrals in Equations (2.8) and (2.13) as their variation as

a function of frequency is not smooth due to mixing of the fields scattered from the front and far

ends of the FBH. Further discussion on this problem will be deferred to Chapter 6.

The pulse-echo amplitudes corresponding to the signals in Figure 2.11 are shown in Table 2.3.

The errors in both models are on the same order. Next, the SAs are compared in Figure 2.12.
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Figure 2.13: Measured and simulated pulse-echo signals for the FBH with focused transducer.
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Figure 2.14: Measured and simulated scattering amplitudes of the FBH. Measurement curve is

extracted from focused transducer measurement.
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Since, the SA of the NM includes reflections from the far-end of the FBH, the contribution of these

reflections was removed by time-gating the corresponding pulse-echo signal and then extracting

the SA from the time-gated pulse-echo signal using the same procedure adopted for extracting the

measured SA (see Equation (2.22)). Extraction of the SA in this fashion will involve a parameter

ε3, which is analogous to the parameter ε2 that is employed in the extraction of the measured SA.

For simplicity, this parameter was set to a fixed value of 0.03. Therefore, sensitivity of the SA to the

value of ε3 is not represented in the figure. As expected from the pulse-echo observations, the NM

and KA agree with each other. The agreement of both the models with the measurement is good

in the lower half of the bandwidth. The divergence towards higher frequencies is explained by the

small-flaw and plane-wave approximations, which get increasingly invalid as frequency gets higher.

The drop in the SA corresponding to the NM at frequencies above the higher bandwidth limit is a

result of the deconvolution procedure adopted in extracting it and does not reflect its true value.

As the same extraction procedure was applied to compute the measured SA, the coincidence of

these two results (NM and measurement) outside the bandwidth is uninformative of the agreement

between the true values of the corresponding SAs.

Table 2.4: Pulse-echo amplitudes (in mV) for the FBH inspection with focused transducer.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.01 9.747 9.792 10.135 0.46 3.98

0.03 9.747 9.781 10.124 0.34 3.87

0.09 9.747 9.685 10.024 0.64 2.84

A2

0.01 10.117 9.874 10.199 2.40 0.81

0.03 10.117 9.864 10.187 2.50 0.69

0.09 10.117 9.767 10.024 3.46 0.29

The results for the spherically-focused transducers are shown in Figures 2.13, 2.14 and Table 2.4.

The pulse-echo predictions are shifted by 0.505 µs to have them coincide with the measurement.

Agreement of the models with the measurement is better than that in the case of the planar

transducer. This is likely due to better validity of the approximations in the TG model. Similar

to the focused transducer inspection of the spherical cavity, the seemingly better agreement of the
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KA compared to the NM for the amplitude A2 is incidental; the maxima of the measurement and

the KA occur at different parts of the pulse. Also, in Figure 2.14, the uncertainty in the measured

SA is low even outside the bandwidth at higher frequencies. As mentioned before, this is due to

the disconnect between the definition of bandwidth and the sensitivity of the extracted SA to the

parameters ε1 and ε2.

2.3.2 Benchmark Problems of 2005

The benchmark problems from the year 2005 cover two types of defects: pillbox-shaped voids

and SDHs. As in the case of the benchmarks from 2004, the SDH problems were not simulated.

Further, only the larger of the two pillbox voids defined in the benchmarks is considered here.

The pillbox void is a cylindrical defect with a length much smaller than the radius. The diameter

(2a) and length of the pillbox considered here are 1.908 mm and 0.089 mm, respectively. The

specimen hosting the defect is made of a Titanium alloy. It has a mass density of 4420 kg/m3.

The longitudinal and shear wave speeds in it are 6200 m/s and 3180 m/s, respectively. Pulse-echo

signals are obtained with a planar transducer with center frequency around 10 MHz at different

angles of incidence. All other details relevant for modeling are mentioned in [121].

2.3.2.1 Normal Incidence

Figure 2.15 shows a schematic of the test setup. The distances D1 and D2 are 25.4 mm and

13.0445 mm, respectively. The diameter of the pillbox corresponds to three longitudinal wavelengths

at the center frequency. Due to the large size of the flaw, the TG model cannot be applied.

Therefore, pulse-echo signals were simulated according to Equation (2.13). The model predictions

are compared with measurement in Figure 2.16. The parameter ε1 was set to 0.12 in computing

the system efficiency factor. The NM and KA results are time-shifted by 0.065 µs and 0.072 µs,

respectively, for overlapping their peaks with the measurement. The NM prediction agrees very

well with the measurement. As in the FBH benchmark, the KA prediction matches the NM because

of the highly specular reflection from the flat front surface of the void. However, unlike the FBH
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Figure 2.15: Schematic of pulse-echo measurement of a Titanium alloy containing a crack-like void.
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Figure 2.16: Measured and simulated pulse-echo signals for the pillbox void at normal incidence.



www.manaraa.com

55

problem, slight differences between the KA and the NM occur even in the leading part of the signal.

This is likely due to scattering from the back surface of the void, which is not represented in the

KA. Due to the small thickness of the void, the voltage pulses resulting from such scattering are

not well separated from the leading pulse.

Table 2.5: Pulse-echo amplitudes (in mV) from Crack C for normal incidence.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.09 14.296 14.274 14.592 0.15 2.07

0.12 14.296 14.106 14.492 0.13 1.37

0.18 14.296 13.781 14.215 0.36 0.57

A2

0.09 15.296 14.370 14.664 6.05 4.13

0.12 15.296 14.189 14.563 7.24 4.79

0.18 15.296 13.853 14.282 9.43 6.63

The amplitudes of the pulse-echo signals are compared in Table 2.5 for three different values of ε1.

Relative errors for both the models are within 10 percent. Because of the large size of the defect, the

scattering amplitude cannot be extracted from the measured pulse-echo signal. Therefore, instead

of the SA, the integral in Equation (2.13), represented as I(ω), was extracted through a procedure

similar to Equation (2.22) and compared with the corresponding model predictions in Figure 2.17.

The sensitivity limits are plotted by varying ε1 in {0.09, 0.12, 0.18} and ε2 in {0.01, 0.03, 0.09},

where the result corresponding to ε1 = 0.12 and ε2 = 0.03 is considered nominal. Both models

agree well with the measurement, as expected from the pulse-echo results.

2.3.2.2 Oblique Incidence at Point A

Figures 2.18 and 2.23 show the schematics of the oblique incidence benchmark problems. In the

former case, the transducer beam is set to maximize the reflection from the left tip (defined as point

A) of the defect. In the latter case, it is set to maximize the reflection from the right tip (defined as

point B) of the defect. The transducer positions corresponding to these two setups were determined

experimentally by scanning the transducer on a horizontal line and observing the amplitude of

the pulse-echo as a function of the scan position. The amplitude peaks at two scan positions,
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Figure 2.17: Magnitude of the integral I(ω) for the pillbox benchmark problem at normal incidence.

Figure 2.18: Schematic of pulse-echo measurement of a Titanium alloy containing a crack-like void.

Oblique incidence on the left tip (point A).
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corresponding to the two setups mentioned above. The scan coordinates for these positions are

listed in the benchmark files [121]. The pulse-echo signals are obtained for two incidence angles (at

the defect): 30◦ and 45◦. For all these cases, the water path length, D1, is fixed and equal to 25.4

mm. The oblique incidence results for point A are described in this subsection.

Figure 2.19 shows the NM pulse-echo results simulated according to Equation (2.13), that is,

by applying the plane-wave assumption without the small-flaw approximation. The parameter

ε1 was set to 0.12. The simulated result was shifted by 0.292 µs to let its peaks coincide with

the measurement. The measured signal is similar to the theoretically predicted response of a crack

(zero-thickness defect), which has three distinct pulses: two resulting from diffraction at the left and

right flash points on the crack and one due to scattering of a surface wave excited on it [130, 131].

This similarity is due to the large aspect ratio of the pillbox void. However, there is an additional

pulse in the pillbox response due to diffraction from the left edge on the bottom surface. This pulse

overlaps with the one resulting from the edge on the top surface since the separation between the

two surfaces is small. The NM model predicts the overall waveform accurately, with the largest

error (among the three distinctly identifiable pulses) appearing in the leading pulse. Since this

pulse includes the contribution from the bottom edge and the lateral surface of the pillbox, the

observed discrepancy is possibly due to the actual shape of the defect being different from that of

the pillbox. Further, since the pillbox void was fabricated in the specimen using a diffusion bonding

process, there may have been additional discontinuities at the bonding surface as inferred in earlier

works with similar defects [132].

Table 2.6: Pulse-echo amplitudes (in mV) for Crack C for 30◦ incidence at point A.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.09 0.53535 0.476 0.535 11.1 0.07

0.12 0.53535 0.473 0.532 11.6 0.63

0.18 0.53535 0.463 0.521 13.5 2.68

A2

0.09 0.6076 0.541 0.601 11.0 1.08

0.12 0.6076 0.537 0.597 11.6 1.74

0.18 0.6076 0.526 0.586 13.4 3.55
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Figure 2.19: Pulse-echo signals for the pill-box flaw corresponding to 30◦ incidence at point A.
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Figure 2.20: Magnitude of the integral I(ω) for the pill-box flaw for 30◦ incidence at point A.
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Although, in general, the KA model can be applied to compute pulse-echo signals without the

small-flaw approximation according to Equation (2.13) [117, 118], the KA model in this work was

developed only under this approximation. Therefore, the KA result shown in Figure 2.19 was

obtained using the TG model according to Equation (2.14). The KA signal was shifted by 0.456 µs

for coinciding it with the measurement. We recall that in the TG model, the diffraction coefficients

on the surface of the defect are approximated with their values at a fixed point (x0) chosen on or

near the defect. If we assume that the two pulses in the KA response are generated primarily by

the surface fields in the vicinity of the left and right tips of the defect, respectively, then according

to Equation (2.13), the amplitudes of these two pulses are weighted by the approximate value of

the diffraction coefficients near the two tips, respectively. Therefore, by taking x0 to be the left tip,

we can minimize the error (due to the small-flaw assumption) in the KA-prediction of the leading

pulse. Likewise, the error in the trailing pulse is minimized by taking x0 to be the right tip. A

middle ground in the errors of the two pulses is achieved by choosing x0 as any point close to the

center of the pillbox. For the KA waveform shown in Figure 2.19, x0 was taken as the left tip on

the top surface of the pillbox to enable comparison of the amplitude of the leading pulse with the

measurement.

The simulated and measured amplitudes are shown in Table 2.6. Both the KA and the measured

amplitudes are higher than that of the NM. For the KA, this is due to modeling errors and for

the measurement, this is due to additional scattering from the lateral and bottom surfaces. This

explains the surprisingly accurate predictions of the KA. Still, so far as the amplitude of the leading

pulse is concerned, either of the models can be used roughly within 10% error. For crack-like flaws

of small diameter, the overlapping of the surface wave contribution with the leading pulse may lead

to larger errors in the KA-predicted amplitudes. The magnitudes of the integral I(ω) computed

with both the models are shown in Figure 2.20. The KA response was obtained by assuming the

velocity diffraction coefficients to be constant over the defect surface (small-flaw assumption). The

sensitivity limits are plotted by varying ε1 in {0.09, 0.12, 0.18} and ε2 in {0.01, 0.03, 0.09}, where

the result corresponding to ε1 = 0.12 and ε2 = 0.03 is considered nominal. The same sensitivity
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Figure 2.21: Pulse-echo signals for the pill-box flaw corresponding to 45◦ incidence at point A.
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Figure 2.22: Magnitude of the integral I(ω) for the pill-box flaw for 45◦ incidence at point A.
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parameter settings are retained for all the oblique incidence simulations. The agreement between

the NM and the measurement is good, whereas the KA response differs from them. This is due to

the small-flaw assumption as well as the missing surface-wave contribution in the KA. The slight

discrepancy between the NM and the measurement is possibly due to experimental uncertainties,

and, particularly, due to additional scattering from the lateral and bottom surfaces of the defect as

explained above.

Results for the 45◦ incidence angle are shown in Figures 2.21, 2.22 and Table 2.7. It is well-

known that the accuracy of the KA in representing edge-diffractions decreases progressively with

an increase in the angle of incidence. We see this effect in the pulse-echo waveforms and the

corresponding amplitudes. With an error of about 30-40% in the amplitude prediction, the KA

may be considered inadequate for modeling scattering beyond 45◦. As a tangential remark, the

time-difference between the leading pulse and the surface wave pulse in Figure 2.19 differs from

that in Figure 2.21 by a small value. This value matches that predicted under the assumption that

a surface wave (which is initiated at the left tip) scatters off the defect at its right tip, serving as

an empirical confirmation of the expected path of propagation of the surface wave.

Table 2.7: Pulse-echo amplitudes (in mV) for Crack C for 45◦ incidence at point A.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.09 0.15971 0.198 0.225 24.0 40.9

0.12 0.15971 0.197 0.223 23.3 39.6

0.18 0.15971 0.193 0.219 20.8 37.6

A2

0.09 0.19025 0.224 0.253 17.7 33.0

0.12 0.19025 0.222 0.251 16.7 31.9

0.18 0.19025 0.218 0.246 14.6 29.3

2.3.2.3 Oblique Incidence at Point B

Figure 2.23 shows the schematic of the oblique incidence tests corresponding to point B. The

results for 30◦ incidence angle are shown in Figures 2.24, 2.25 and Table 2.8. The KA result was

obtained with the TG model, where the point x0 for approximation of the diffraction coefficients
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Figure 2.23: Schematic of pulse-echo measurement of a Titanium alloy containing a crack-like void.

Oblique incidence on point B.
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Figure 2.24: Pulse-echo signals for the pill-box flaw corresponding to 30◦ incidence on the right tip

(point B).
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Figure 2.25: Magnitude of the integral I(ω) for the pill-box flaw for 30◦ incidence at point B.
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Figure 2.26: Pulse-echo signals for the pill-box flaw corresponding to 45◦ incidence at point B.
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was chosen as the right tip on the top surface of the defect. This choice of x0 minimizes error

(due to the small flaw assumption) in the trailing pulse of the KA pulse-echo prediction. Similar

to pulse-echo results for point A, the NM agrees well with the measurement. Both the models

simulate the reflection from the right tip quite accurately. In the KA signal, the leading pulse

has larger amplitude than the trailing pulse because beam variations on the surface of the defect

are ignored. Further, the choice of x0 maximizes error in the leading pulse prediction of the KA.

Therefore, the leading pulse in the KA model was not considered for calculating the amplitudes in

Table 2.8. We observe that both models predict the amplitudes within 15% error. The results for

the 45◦ incidence are shown in Figures 2.26, 2.27 and Table 2.9. Again, as in the case of point A,

the KA amplitudes have an error of about 40%, and, therefore, the KA model is inadequate for

incidence angles above 45◦.

Table 2.8: Pulse-echo amplitudes (in mV) for Crack C for 30◦ incidence at point B.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.09 0.53393 0.550 0.453 3.01 15.2

0.12 0.53393 0.546 0.450 2.26 15.7

0.18 0.53393 0.536 0.441 0.39 17.4

A2

0.09 0.53433 0.554 0.458 3.68 14.3

0.12 0.53433 0.551 0.455 3.12 14.8

0.18 0.53433 0.540 0.446 1.06 16.5

Table 2.9: Pulse-echo amplitudes (in mV) for Crack C for 45◦ incidence at point B.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.09 0.21929 0.181 0.126 17.5 42.5

0.12 0.21929 0.180 0.125 17.9 43.0

0.18 0.21929 0.176 0.126 19.7 43.9

A2

0.09 0.21738 0.183 0.128 15.8 41.1

0.12 0.21738 0.181 0.127 16.7 41.6

0.18 0.21738 0.178 0.125 18.1 42.5
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Figure 2.27: Magnitude of the integral I(ω) for the pill-box flaw for 45◦ incidence at point B.

Figure 2.28: Schematic of pulse-echo measurement of a TransOpticTM specimen containing a

polystyrene sphere.
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2.3.3 Polystyrene Sphere in TransOptic Specimen

The following example does not appear in the WFNDEC benchmarks. Figure 2.28 shows a

schematic of the inspection. The inspection sample is made of TransOpticTM material, which is a

thermoplastic acrylic supplied by the company Buehler [133]. A polystyrene sphere of radius 325 µm

is embedded in it. We obtained pulse-echo measurements from this sample using a spherically-

focused transducer at normal incidence. The inspection parameters are listed in Table 2.10. The

distances D1 and D2 are 86.98 mm and 6.1 mm, respectively. The process applied for determining

some of the inspection parameters is described below.

The longitudinal wave speed in the sample was calculated from the time differences between

the front and back-wall reflections at three different transducer heights. The value reported in

Table 2.10 is the mean of the three measurements. Similarly, the shear wave speed was calculated

from time differences between the first and second back-wall reflections measured with a contact

shear wave transducer. Again, the reported value is a mean of three different measurements.

Attenuation coefficient of the longitudinal wave in the sample was determined from the front and

back wall reflections using the procedure outlined in [13, 9.2.2], with the parameter ε appearing

in the deconvolution process set to 0.01 times the maximum value of |F | (see Equation (9.91) in

[13]). Standard values for the wave speeds and mass density of polystyrene [120] were used for the

flaw due to the difficulty in measuring these parameters for a small spherical sample. The effective

focal length of the transducer was obtained by placing the transducer above the inspection sample

and maximizing the amplitude of front-wall reflection by varying the height of the transducer

face measured from the front wall. The height at which the signal is maximized is taken as the

effective focal length. To be sure, this height is not equal to the true effective focal length [13,

§8.2.2.1-8.2.2.3], but lies close to it. A small error is introduced by equating them.

Figure 2.29 shows the calibration reference signal obtained from the frontwall of the inspection

sample. The 6 dB beamwidth at the flaw is about four times the radius of the polystyrene sphere

at the upper frequency bandwidth limit. Therefore, the small-flaw model is applied to simulate

pulse-echo signals. Figure 2.30 shows the simulated and measured pulse-echo signals. The measured
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Figure 2.29: Front-wall reflection from the TransOpticTM sample in the calibration measurement.
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Figure 2.30: Pulse-echo signals obtained from the polystyrene sphere embedded in the

TransOpticTM sample.
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Table 2.10: Parameters for the inspection in Section 2.3.3.

Parameter Value

P-wave speed in water (m/s) 1486.6

Density of water (kg/m3) 1000

Attenuation in water (Np/m) (f in MHz) 0.02479 f2

P-wave speed in block (m/s) 2689±25

S-wave speed in block (m/s) 1340±28

Density of block (kg/m3) 1171

P-wave attenuation in block (Np/m) (f in MHz) 8.001654 f1.0792

P-wave speed in polystyrene (m/s) 2400

S-wave speed in polystyrene (m/s) 1280

Density of polystyrene (kg/m3) 1060

Radius of transducer (mm) 6.35

Effective focal length (in) 4.66

signal consists of two distinct pulses: the earlier pulse is the leading-edge reflection, and the later

pulse is primarily due to reflection from the point at which the incident wave leaves the sphere

(trailing-edge reflection). The contributions of internal reflections and creeping waves are also

present in the later pulse. Both models predict the leading-edge reflection quite well. However,

the KA models only the leading-edge reflection, and hence is inappropriate for modeling inclusions.

Particularly, when the size of inclusion is relatively small, the leading-edge pulse overlaps with

the signals arising from other reflections. This may lead to a large error in the KA pulse-echo

amplitude, which is a key parameter in MAPOD studies.

The NM pulse-echo signal includes contributions from all reflections. However, the amplitude

of the later-time pulse in NM is lower than that of the measurement. This can be explained by

uncertainties in the determination of wave speeds of the inclusion and specimen. For weak scatterers

particularly, it is well-known from Born approximation theory that the amplitude of reflected waves

is highly sensitive to the difference in wave speeds of the scatterer and inclusion [21, 134]. For

example, Figure 2.31 shows the NM pulse-echo prediction obtained when the longitudinal wave

speed of the inclusion is assumed to deviate from its nominal value by -50 m/s. Compared to the

previous case, we observe that the amplitude of the later-pulse fits the measurement better, with a
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Figure 2.31: Pulse-echo signals for the TransOpticTM inspection with longitudinal wave speed of

the inclusion modified to cp = 2350 m/s.
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Figure 2.32: Measured and simulated scattering amplitudes for the spherical polystyrene inclusion

in the TransOpticTM specimen.
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relatively lower change in the amplitude of the leading-edge pulse. In addition, uncertainties in the

measurement of the effective focal length of the transducer influence the accuracy of the system

efficiency factor (see Section 2.2.3). This is possibly another reason for the deviation of NM results

from measurement.

Pulse-echo amplitudes of the leading-edge pulse are compared in Table 2.11. The errors in KA

and NM are similar. However, for relatively small inclusions, the amplitude predictions of KA will

have large errors, as mentioned before. The measured and simulated SAs are shown in Figure 2.32.

Unlike the KA result, the SAs of NM and measurement show significant oscillations. This is due to

the existence of two distinct pulses in the corresponding time-domain signals. The NM result agrees

well with the measurement. The disagreement towards the higher frequencies in the bandwidth

is due to uncertainties in the wave speed, as mentioned above, and the small-flaw approximation

applied in the simulation model.

Table 2.11: Pulse-echo amplitudes (in mV) for the TransOptic inspection.

Amplitude ε1 Measurement NM KA % Error NM % Error KA

A1

0.06 2.304 2.316 2.335 0.52 1.35

0.09 2.304 2.297 2.314 0.30 0.43

0.12 2.304 2.271 2.286 1.43 0.78

A2

0.06 2.625 2.562 2.511 2.40 4.34

0.09 2.625 2.545 2.496 3.05 4.91

0.12 2.625 2.521 2.474 3.96 5.75

2.4 Conclusions

In this chapter, KA and NM are applied to simulate various benchmark problems, and their

predictions for standard measurement outputs are compared with measurements. KA is suitable

for modeling specular scattering from defects. For relatively small spherical voids (a ∼ λ/4), the

largest error observed in KA pulse-echo amplitude predictions is around 10% of the true amplitude.

A higher error is expected for smaller voids. The NM is an attractive choice for modeling such
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voids since it performs consistently even with a decrease in the void size. The largest differences

between the two models are observed for inclusions and for edge-diffractions from cracks at angles

greater than 45◦. In the latter case, amplitude errors in KA are higher than those of NM by around

20 percentage points. Therefore, full-wave models such as the NM make substantial improvements

to model predictions in such cases. The scattering spectra obtained from KA differ quite distinctly

from the measured response for both inclusions and non-specular crack inspections. Hence, full-

wave models are the proper choice in applications that require knowledge of the scattering spectra,

for example, for classifying defects.
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CHAPTER 3. NUMERICAL STUDY OF HIGH-ORDER NYSTRÖM

METHOD FOR ELASTIC WAVE SCATTERING

This chapter presents an argument for the use of high-order discretization as a means to reduce

the computational resource requirements of BEMs. We focus particularly on a locally-corrected

Nyström method (NM) for 3D elastodynamic scattering problems. Two versions of this NM which

use different discretization orders, respectively, are compared in terms of their computational time

and memory usage for solving large-scale model problems in elastic-wave scattering. It is demon-

strated that despite the additional computations required for second-order discretization, higher

convergence rates drastically reduce the total resource requirement for achieving a given level of

output error, making the NM viable for practical applications in UNDE.

3.1 Introduction

The computational time and memory utilization of BEMs is relatively high compared to ap-

proximation methods. A key parameter that decides the computational cost is the number of

discretization variables (N) or degrees of freedom (DOFs) required by the BEM to achieve a given

level of output accuracy. The asymptotic convergence rate is the rate at which the output error

decreases with an increase in the number of DOFs (a process known as refinement) when N is rel-

atively large. The process of h-refinement involves decreasing the size of mesh elements as a means

to increase the number of DOFs, and p-refinement involves increasing the degree of polynomials

used for approximating the fields. Between two BEMs (more precisely, refinement methods), the

method with higher convergence rate requires lower number of DOFs for a given level of error,

assuming that the prescribed error is in the asymptotic regime. This does not, however, imply that

higher-order methods have a lower computational resource requirement (for the same level of error)

since the higher convergence rate may be achieved at a drastically higher computational cost.
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In this chapter, we argue that adopting even second-order geometry and field discretizations in

a locally-corrected NM (LC-NM) leads to a significant reduction in computational costs compared

to methods based on lower-order discretizations. The following section gives an overview of the LC-

NM considered in this thesis. Convergence rates for methods based on different discretization orders

are compared in Section 3.3. Two LC-NMs with different orders of discretization are compared in

Section 3.4 in terms of their computational time and memory usage for solving large-scale scattering

problems. The data for the lower-order method are taken from [31].

3.2 High-order Nyström Method

This section provides an overview of the LC-NM considered in this thesis. The reader may

refer to Section 4.3 for a full description of this method. The primary purpose of this section is

to describe the sources of error in the LC-NM. This LC-NM is equivalent to a collocation-BEM

in which surface fields are expanded using an interpolation technique and where the collocation

and field interpolation points coincide with quadrature points on the mesh elements. Traditionally,

the NM proceeds (i) by posing the underlying boundary integral equations on an exact geometric

representation of the boundary, and (ii) discretizing the integrals using global quadrature rules, by

which it implicitly commits to the existence of a global parametric description of the boundary.

The assumption of a global parametric description is too restrictive on the types of defects that

can be modeled since most CAD representations do not admit such descriptions. Restriction

of the method to exact geometries excludes approximate representations of boundaries that are

obtained, for example, from coarsening of features and subsequent refinements. We relax both the

assumptions so as to allow the application of the NM to approximate geometric representations

based on boundary-element meshes. It is in this sense that the term LC-NM is used throughout

this thesis.

Consider a defect in an otherwise homogeneous unbounded elastic solid. The scattering problem

involves finding the displacement and stress fields scattered from the defect in the presence of an
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incident displacement field given by uI(x). This problem can be reformulated in terms of the

conventional boundary integral equations (CBIEs), which are given by (see Section 4.2.6)

−
∫
S

(
G+(x,x′) · t(x′) +

[
n̂′ ·Σ(1)

+ (x,x′)
]T
· u(x′)

)
dS(x′) +

1

2
u(x) = uI(x), (3.1a)

−
∫
S

(
G−(x,x′) · t(x′) +

[
n̂′ ·Σ(1)

− (x,x′)
]T
· u(x′)

)
dS(x′)− 1

2
u(x) = 0. (3.1b)

for x ∈ S, where u and t are the displacement and traction fields, respectively, S is the surface of

the defect, and Σ
(1)
± (x,x′) and G±(x,x′) are the fundamental solutions of stress and displacement

fields, respectively. The “+” and “-” subscripts distinguish fundamental solutions obtained with

elastic material constants of the host and the defect, respectively.

Solutions to the CBIE-formulation provide the total displacement and traction fields on the

surface of the defect. The scattered fields outside the defect can be computed from the surface

fields using representation formulas. All numerical examples presented in this chapter involve the

application of the LC-NM to the CBIE-formulation for solving the scattering problem. We assume a

surface mesh of the defect that consists of a set of points on S which can be mapped onto triangular

patches through a prescribed connectivity between the points. If the surface of the defect is spec-

ified, for instance, in terms of a CAD representation, the first step involves constructing a surface

mesh of the above-mentioned type from the CAD representation. Then, an approximation of S is de-

veloped via patch-wise parametric interpolation using polynomial functions. Because of conformal

interpolation, the resulting approximation S̃ consists of continuous but non-overlapping (except at

the edges) curved triangular elements. Specifically, there are two interpolation parameters, ξ1 and

ξ2, which lie in the reference triangular patch defined by Ω = {(ξ1, ξ2) ∈ R2 | ξ1, ξ2 > 0, ξ1 +ξ2 ≤ 1}.

For an interpolation scheme of order M , the interpolation functions are polynomials of degree M

in ξ1 and ξ2. We consider mesh interpolations of orders 1 and 2 in this implementation.

Equations (3.1) are rewritten by replacing S with the approximation surface S̃. On each element

of S̃, the displacement and traction fields are expanded using an interpolation technique wherein the

interpolation nodes coincide with quadrature points on the element. All the quadrature points are

internal to the element. Therefore, this interpolation technique can be considered as an expansion
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of fields using non-conformal basis functions. The components of displacement and traction fields

at the interpolation/quadrature points form the DOFs that need to be determined. According to

the foregoing field interpolation, the integrals in Equation (3.1) can be written in the following

form

−
∫
S̃
dS(x′) T

(1)
+ (x,x′) · u(x′) =

Np∑
p=1

Nn∑
i=1

−
∫

∆p

dS(x′) T
(1)
+ (x,x′) ·

[
L

(p)
i (x′)u(p)

iα e(p)
α (x′)

]
,

(sum over α = 1, 2, 3) (3.2)

where T
(1)
+ (x,x′) =

[
n̂′ ·Σ(1)

+ (x,x′)
]T

, Np is the total number of elements, Nn is the number of

interpolation points per element, ∆p is the integration domain corresponding to the element with

index p, L
(p)
i : ∆p → R is an interpolation function such that L

(p)
i (y

(p)
j ) = δij for all interpolation

nodes y
(p)
j (j = 1 to Nn) in the pth element; e

(p)
α (x′) for α = 1, 2, 3 are basis vectors at the point x′

such that u(x′) = u
(p)
iα e

(p)
α (x′) (sum over α), and u

(p)
iα are unknowns which need to be determined.

The interpolation functions L
(p)
i , when written as functions of the interpolation parameters ξ1 and

ξ2, are polynomials of degree 0, 1, 2 or 3. See Section 4.3 for details.

Rewriting (3.1) by approximating all integrals as shown in (3.2) yields two equations containing

the DOFs. These equations are valid for all x ∈ S̃. A finite-dimensional system of equations

is obtained by performing collocation at the interpolation/quadrature points and equating the

components along the dual basis vectors. Let x0 = y
(q)
j be a collocation point representing the jth

interpolation point in the element with index q. Let ẽ
(q)
β (x0), for β = 1, 2 and 3, represent the

dual basis vectors of the basis given by e
(q)
α (x0). For convenience, let e0 represent ẽ

(q)
β (x0). The

equation corresponding to component β at x0 is

Np∑
p=1

Nn∑
i=1

[
t
(p)
iα

∫
∆p

L̃
(p)
i (x′) e0 ·G+(x0,x

′) · e(p)
α (x′) dS(x′)+

u
(p)
iα −
∫

∆p

L
(p)
i (x′) e0 ·T(1)

+ (x0,x
′) · e(p)

α (x′) dS(x′)
]

+
1

2
u

(q)
jβ = e0 · uI(x0). (3.3)

Observe that the coefficients of DOFs are in the form of integrals over the domain ∆p. These

coefficients constitute elements of the matrix which needs to be inverted for determining the DOFs.
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If x0 is sufficiently away from ∆p, the coefficients can be computed using the same quadrature

rule that defines the interpolation nodes, as shown below:∫
∆p

dS(x′) e0 ·T(1)
+ (x0,x

′) ·
[
L

(p)
i (x′) e(p)

α (x′)
]

=

Nn∑
j=1

wje0 ·T(1)
+ (x0,y

(p)
j ) ·

[
L

(p)
i (y

(p)
j ) e(p)

α (y
(p)
j )
]

(3.4a)

= wie0 ·T(1)
+ (x0,y

(p)
i ) · e(p)

α (x
(p)
i ), (3.4b)

where wj are the quadrature weights. Therefore, each coefficient can be computed with a single

evaluation of the kernel function. More importantly, there is no interpolation error in the evaluated

values of coefficients since quadrature points coincide with interpolation nodes. See Section 4.3.3

for the degree of exactness (order) of the quadrature rules used in this implementation. When

x0 is one of the quadrature points inside ∆p, the integrand in (3.4a) is singular. Similarly, when

x0 is close to ∆p but not inside it, the integrand is nearly-singular. In both cases, singularity

subtraction techniques are applied to compute the coefficients [30, Chap. 4]. The resulting values

of coefficients have both quadrature and interpolation errors. Most UNDE applications require

only the scattering spectra of the defect in the far-field. These far-field quantities can be expressed

in the form of surface integrals over the defect, and computed using the same quadrature rule that

is applied in field interpolation. The far-field quantities determined in this fashion have quadrature

error but are free from field-interpolation error. Summing up, the primary sources of error are:

1. Interpolation error in geometry description.

2. Error in computation of matrix elements, which includes

(a) quadrature error in near-field matrix elements,

(b) interpolation error in near-field matrix elements, and

(c) quadrature error in far-field matrix elements.

3. Quadrature error in calculating scattering spectra.
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3.3 Numerical Study of Error and Convergence Rates

This section shows typical convergence rates (h-refinement) achieved with discretizations of

various orders. First, consider scattering of a longitudinal plane wave from a spherical cavity of

radius a. Assume a spherical coordinate system with θ denoting the polar angle. The cavity is

centered at the origin, and the plane-wave is propagating along the positive z -axis. The mass

density and Lamé constants of the host material are 3 kg/m3, 1 N/m2 and 1 N/m2, respectively.

The longitudinal-wave scattering amplitude [13, §10.2] of the cavity is calculated for 181 uniformly

spaced values of θ in the range [0, π]. Let An be a vector of length 181 that stores the scattering

amplitudes determined from the LC-NM. The relative error is defined as ||An −Aref||2/||Aref||2,

where Aref is the reference solution obtained from the separation-of-variables technique [13, §10.6.2].

Figure 3.1 shows the relative errors for kpa = π, where kp is the longitudinal wave number. Let

Ng and Np represent the order of geometry interpolation and the degree of polynomials used in

field interpolation, respectively. The nomenclature “Rule-xy” is used to distinguish results obtained

with different discretization rules, where the numbers x and y represent the values of Ng and Np,

respectively. Note that Np is related to the number of field interpolation points in each curvilinear

element, and is thus related to the degree of exactness of the quadrature rule used for computing

far-field matrix elements. The results for Rule-22 and Rule-23 are based on 20, 80, 320 and 1280

second-order elements, where refinement from one-level to the next is performed by refining each

curvilinear triangle into four sub-triangles. The results for Rule-11 and Rule-10 are based on a

similar refinement strategy, starting from 80 first-order elements. The convergence rate increases

when either Ng or Np is increased, except for Rule-23. For Rule-22, we observe that a relative error

of 0.001 is achieved with just 8 interpolation nodes (on average) per shear wavelength, whereas

methods based on first-order geometry discretization need at least twice as many nodes.

Rule-23 has the same convergence rate as Rule-22 because of the effect of geometry error

(see [135, §3.2] for a similar observation in electromagnetic scattering problems). If the order

of geometry interpolation and the number of elements is fixed, one would eventually reach a point

where increasing the degree of polynomials used in field approximation does not lead to a significant
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decrease in the error since the error in field approximation at that point would be sufficiently low

compared to the effect of geometry error. This phenomena is also seen in high-order finite element

methods [136, pp. 4137-4138]. If the error in scattering amplitude occurs mostly from geometry

approximation, the convergence rate should depend solely on the order of geometry interpolation.

This explains why Rule-23 has the same convergence rate as Rule-22.

To further support the above reasoning, the relative errors for all combinations of Ng ∈ {1, 2}

and Np ∈ {0, 1, 2, 3} are shown in Figure 3.2. For Rule-12 and Rule-13, we observe no further

decrease in the error compared to Rule-11 for the same number of elements. However, when the

order of geometry interpolation is increased to 2, we observe that the method with Np = 2 gives

lower error than that with Np = 1 (for the same number of elements). The degree that the

corresponding convergence rates differ by depends on the relative contributions of different sources

of error mentioned in the previous section, where it should be noted that the total error is not

additive.

The foregoing example indicates that methods with Np = 3 may not be useful unless geometry

interpolation is of order three or higher. This is because the error in scattering amplitude in

this example occurs mostly from geometry error. Specifically, for a fixed second-order geometry

representation, the error from Rule-23 is almost the same as that from Rule-22. It is indeed

possible that for some other scattering problems, Rule-23 has lower error than Rule-22 for the

same geometry representation. For example, consider the same scattering problem as above but

at a higher frequency such that kpa = 2.648π. The errors for different discretization rules are

shown in Figure 3.3. Results for Rule-10 and Rule-11 are obtained by h-refinement starting from

80 first-order elements. For Rule-22 and Rule-23, the starting point is 20 second-order elements.

Here, we find that for the same number of mesh elements, Rule-23 has lower error than Rule-22.

However, for the same number of nodes per wavelength, h-refinement of Rule-22 still leads to a

lower error than Rule-23.

If the wavenumber is increased further to kpa = 3.216π, we find the opposite result: for the

same number of nodes per wavelength, h-refinement of Rule-23 has lower error than Rule-22 when
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Figure 3.1: Relative error for kpa = π as a function of the average number of interpolation nodes

per shear wavelength.
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Figure 3.2: Relative error for kpa = π for all combinations of field and geometry discretizations.
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the number of nodes is relatively high, as shown in Figure 3.4. In UNDE simulations, wavenumbers

close to the above value correspond to frequencies near the upper limit of bandwidth. Therefore,

rules with Np ≥ 3 maybe useful for simulations at the higher end of the frequency bandwidth even

if geometry discretization is of order two. For scattering problems where the effect of geometry

error is small, Rule-23 may indeed perform better than Rule-22 even at low frequencies. This is the

case, for example, for scattering from a planar rectangular crack-like defect, where the geometry

representation is exact. Planar defects of other shapes still have a geometry error because of

imperfect representation of edges. Errors and convergence rates for scattering from traction-free

circular cracks (open surfaces) are shown in Chapter 4 since the CBIE cannot model this scattering

problem.

3.4 Comparison of Simulation Times and Memory Usage

In this section, the simulation times and memory usage of the foregoing LC-NM (Rule-22) are

compared with those of the LC-NM in [31], which is based on first-order geometry representation

and zeroth-order field discretization. For convenience, we refer to the former as the higher-order

method, and the latter as the lower-order method. Both methods are accelerated using the multi-

level fast multipole algorithm (MLFMA). See [30, 31, 137] for implementation details. All simula-

tions of the higher-order method were performed on a Dell Precision T7500 workstation with two

quad-core 2.13 GHz processors and 24 GB memory but using only a single core. The simulations

in [31] were performed on a Dell Precision 690 workstation with two dual-core 3.0 GHz processors

and 16 GB RAM but using only a single core.

The aim of the comparison in this section is to show that higher-order field and geometry

discretization leads to a significant reduction in the total computational resource requirement due

to higher convergence rate, despite introducing additional complexity in the calculation of singular

and near-singular elements of the influence matrix. Many problems in practical UNDE modeling

would remain impossible to tackle via boundary integral equation techniques without at least

second-order field and geometry discretizations.
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Figure 3.3: Relative error for kpa = 2.648π as a function of the average number of interpolation

nodes per shear wavelength.
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Table 3.1: CPU time and memory usage for scattering from rigid cube.

Reference [31] Rule-22

CPU Time (hr.) 64.1 1.03

Memory (GB) - 5.8

No. of unknowns 343,224 31,104

MLFMA levels 5 4

3.4.1 Rigid Cube

Consider scattering of a longitudinal plane-wave from a rigid cube inside an elastic solid. The

mass density (ρ), Poisson’s ratio (ν) and normalized longitudinal wavenumber (kpa) of the elastic

solid are 1 kg/m3, 0.5 and 20, respectively, where a is half of the side length of the cube. The

incident wave is traveling along the negative z -axis. The cube is centered at the origin, with its

faces aligned with the coordinate planes. A standard spherical coordinate system is assumed. For

the higher-order method, the number of mesh elements is 1728, leading to 31,104 DOFs. Since

exact analytical solutions are not available for this problem, this number was selected based on the

criteria of obtaining external fields that are visually similar to those in [31]. This enables a fair

comparison between the simulation times of the two methods.

Figure 3.5 shows magnitudes of the radial and polar components of displacement at a distance

of 5a from the origin, calculated using the higher-order method. Table 3.1 shows the CPU time

and number of DOFs of both methods. The size of the cube is about six times the longitudinal

wavelength inside the host material. The relative size of the defect is comparable to that observed

near the higher-end of the frequency range in immersion testing measurements. The CPU time

for the lower-order Nyström method is prohibitively large to be of any practical use and can be

reduced by at least by a factor of 50 using second-order discretization.

3.4.2 Rigid Sphere

Next, we consider scattering of a longitudinal plane-wave from a rigid sphere inside an elastic

solid. The mass density (ρ), Poisson’s ratio (ν) and normalized longitudinal wavenumber (kpa)
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Figure 3.5: Magnitude of scattered displacement field at r = 5a due to a longitudinal plane-wave

incident on a rigid cube in an elastic solid (kpa = 20). Radial component is ur. Polar component

is ut. Fields are normalized by the variable a.



www.manaraa.com

84

0 30 60 90 120 150 180

 (Degrees)

0

0.4

0.8

1.2

1.6

N
o
rm

al
iz

ed
 d

is
p
la

ce
m

en
t

|u
r
|, Analytical

|u
t
|, Analytical

|u
r
|, NM

|u
t
|, NM

Figure 3.6: Magnitude of scattered displacement field at r = 5a due to scattering from a rigid

sphere in an elastic solid (kpa = 20). Radial component is ur. Polar component is ut. Fields are

normalized by the variable a.
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Figure 3.7: Relative errors in the radial and polar components of the displacement field for scattering

from rigid sphere (kpa = 20).
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Table 3.2: CPU time and memory usage for scattering from rigid sphere.

Reference [31] Rule-22

CPU Time (hr.) 50.7 1.23

Memory (GB) - 2.9

No. of unknowns 317,196 23,040

MLFMA levels 5 5

of the host material are 1 kg/m3, 0.1 and 20, respectively, where a is the radius of the sphere.

The incident wave travels along the negative z -axis. Magnitude of the scattered displacement field

at a radial distance of 5a, computed from the higher-order method, is shown in Figure 3.6. This

solution is generated using 1280 second-order mesh elements and 23,040 DOFs. Mesh density for

the higher-order method is set such that its solution matches the exact analytical solution [13,

§10.6.2] at least as closely as in [31].

Since relative errors in displacement fields are not shown in [31], a quantitative comparison

of the accuracy of the higher and lower-order methods is not possible. The errors in the radial

and polar components of the displacement calculated from the higher-order method are shown

Figure 3.7. Both errors are normalized by the maximum value of the corresponding component

over θ ∈ [0, π]. The error in the polar component is higher because the radial and polar components

of displacement are generated exclusively by scattered longitudinal and shear waves, respectively.

Since shear wavelength is smaller than the longitudinal wavelength, a higher mesh resolution is

needed to capture shear waves at the same level of accuracy as longitudinal waves. Table 3.2

compares total computation time of the two methods. The higher-order Nyström method performs

about 40 times faster than the lower-order method.

3.4.3 Elastic Sphere

The third example consists of scattering from a spherical elastic inclusion. The incident wave

is same as that in the previous two examples. The mass density (ρ), longitudinal wave speed (cp)

and shear wave speed (cs) of the host medium are 1 kg/m3, 0.95 m/s and 0.63 m/s, respectively,
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Figure 3.8: Magnitude of surface displacement field on a cut-plane for scattering from a spherical

elastic inclusion in an elastic solid (kpa = 8). Radial component is ur. Polar component is ut.

Fields are normalized by the variable a.
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Figure 3.9: Relative errors in the radial and polar components of the surface displacement field for

scattering from a spherical elastic inclusion in an elastic solid (kpa = 8).
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Table 3.3: CPU time and memory usage for scattering from spherical inclusion.

Reference [31] Rule-22

CPU Time (hr.) 55.9 2.67

Memory (GB) 12 1.3

No. of unknowns 237,600 11,520

MLFMA levels 5 3, 4

and those of the embedded sphere are 2 kg/m3, 0.77 m/s and 0.5 m/s, respectively. The frequency

is set such that the normalized value of the longitudinal wavenumber in the host medium (kpa) is

8. The surface displacement on a cut-plane calculated using the higher-order method is shown in

Figure 3.8. The exact analytical solution is also shown for reference. The numerical solution is

calculated using 320 second-order elements and 11,520 DOFs. As in the previous two examples, the

number of mesh elements was set high enough to ensure that the solution matches the analytical

result at least as closely as in [31]. Relative errors are shown in Figure 3.9.

The CPU time and memory usage of both methods are shown in Table 3.3. In the MLFMA

solution of the higher-order method, the number of levels corresponding to the Green’s functions of

the host and scattering medium are three and four, respectively. The higher-order method leads to

a significant reduction in the number of DOFs, total simulation time and memory requirement. For

comparison, solutions generated using Rule-11 with 1280 and 5120 first-order elements are shown

in Figures 3.10 and 3.12, respectively. Discontinuities in the NM results are due to the use of

non-conforming basis functions, which are discontinuous between mesh elements. Corresponding

errors are shown in Figures 3.11 and 3.13. For convenience, these two instances of Rule-11 will be

called Rule-11a and Rule-11b, respectively. The number of DOFs for Rule-11a and Rule-11b are

N = 23, 040 and N = 92, 160, respectively. In both cases, the number of DOFs is higher than that

used for Rule-22.

The solution error from Rule-11a is higher than the error from Rule-22, whereas the error from

Rule-11b is slightly lower than that from Rule-22. A performance comparison of Rule-11 and Rule-

22 is made in Table 3.4. Rule-22 performs better than Rule-11a in memory usage, matrix filling time



www.manaraa.com

88

Table 3.4: Comparison of performance metrics of Rule-22 and Rule-11 for the spherical inclusion

problem.

Rule-22 Rule-11

320 triangles 1280 triangles 5120 triangles

N = 11, 520 N = 23, 040 N = 92, 160

MLFMA levels 3, 4 4, 5 4, 5

Memory (GB) 1.35 1.4 10.39

Total simulation time (sec) 9601 7957 27090

Matrix filling time (sec) 1140 1429 5745

Iterative solver time (sec) 8333 6330 20609

Average time per iteration (sec) 11.94 15.22 42.95

Total number of iterations 675 401 463

and average time per iteration, despite the former being more accurate than the latter. Rule-22 still

has a higher total simulation time than Rule-11a since the total time is dominated by the iterative

solution process, which is in turn a result of ill-conditioning of the CBIE formulation at relatively

high frequencies. This will not be a concern, therefore, for well-conditioned BIE formulations since

the number of iterations required by both Rule-22 and Rule-11a would be small in that case.

Comparison between Rule-22 and Rule-11b indicates that the former performs significantly better

in all computational performance metrics. The matrix filling time and time per iteration are lower

for Rule-22 by a factor of 5 and 3.6, respectively. This comparison shows that for the same level of

output error, Rule-22 may indeed have a lower matrix filling time and average time per iteration.

Particularly, complexity in the calculation of near-field matrix elements in Rule-22 does not make

the method less efficient than Rule-11 since the effect of this complexity on simulation times is

offset by the difference in convergence rates of the two methods.

3.5 Conclusions

Methods based on first-order geometry and field discretizations are quite commonly used in

the BEM for solving large-scale scattering problems since computation of near-field matrix ele-

ments, which is one of the most time-consuming parts of the BEM, is simplified by low-order
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Figure 3.10: Magnitude of surface displacement field in the spherical inclusion problem (kpa = 8).

NM result is generated from Rule-11 with 1280 mesh elements. Radial component is ur. Polar

component is ut. Fields are normalized by the variable a.
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Figure 3.11: Relative errors in the radial and polar components of the surface displacement field

on the spherical inclusion for Rule-11 with 1280 mesh elements.
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Figure 3.12: Magnitude of surface displacement field in the spherical inclusion problem (kpa = 8).

NM result is generated from Rule-11 with 5120 mesh elements. Radial component is ur. Polar

component is ut. Fields are normalized by the variable a.
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Figure 3.13: Relative errors in the radial and polar components of the surface displacement field

on the spherical inclusion for Rule-11 with 5120 mesh elements.
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discretizations. However, if the near-field matrix elements are evaluated efficiently using singular-

ity subtraction techniques, such as in the LC-NM presented here, high-order discretizations lead to

reduced simulation times. This is because high-order methods require a lower number of DOFs for

achieving a given level of output error. We find that even if geometry discretization is of order two,

increasing the degree of polynomials used in field approximation beyond two can be useful for some

scattering problems: it leads to lower errors despite the asymptotic convergence rate being limited

by the order of geometry interpolation. The reduction in simulation times due to high-order dis-

cretization is crucial for UNDE applications. This motivates the application of high-order LC-NM

to BIE formulations other than the one considered in this chapter.
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CHAPTER 4. A HIGH-ORDER BOUNDARY ELEMENT METHOD FOR

ELASTIC WAVE SCATTERING

This chapter presents a high-order boundary-element method (BEM) for simulating elastic

wave scattering using the direct CFIE formulation. The first section provides a brief introduction

to boundary integral equations (BIEs) and the CFIE. The following section contains a derivation of

the CFIE and definitions of various kernels appearing in it. Although the derivation is inessential

for following BEM-related work, it is provided for the sake of completeness. Among other things, it

explains the origin and interpretation of hypersingularity and the continuity requirements of density

functions. The proposed high-order BEM and its application to CFIE formulation are discussed in

Section 4.3. Remaining sections are devoted to numerical results and validations.

4.1 Introduction

In this chapter, we define the elastic wave scattering problem and present its reformulation

in terms of the conventional and hypersingular boundary integral equations (CBIEs and HBIEs,

respectively). The combined-field integral equation (CFIE) formulation is obtained by combining

the CBIE and HBIE formulations using a coupling parameter. Unlike the elastic wave scattering

problem, both conventional and hypersingular BIE formulations admit multiple solutions at some

frequencies. This artifact is known as the fictitious eigenfrequency problem. In contrast, the CFIE

formulation is uniquely solvable at all frequencies and, hence, is equivalent to the elastic wave

scattering problem. Therefore, it is more appropriate than the conventional and hypersingular

BIEs for numerical computation of scattering solutions using BEMs or, more generally, boundary

integral equation methods (BIEMs).

BIEMs for all three BIE formulations mentioned above are reported in the literature [30, 31, 103,

111–113, 137–143]. Out of these, only [113, 139, 140] are based on the CFIE formulation. Further,
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only [139, 140] use discretizations of order more than one. The BIEM in [112] is high-order and

can be easily extended to CFIE formulations, though it has not been done. Since this BIEM uses

smooth overlapping patches to represent the boundaries of scatterers, it is not easily generalizable

to arbitrary shapes (see [144] for a description of such boundary representations). In contrast to

the foregoing BIEs, elastic wave scattering can also be formulated in terms of indirect BIEs, where

auxiliary field variables are the unknown density functions. In [145, 146], Liu et al. developed a

BEM for an indirect BIE formulation. However, this BIE is also ill-conditioned at some frequencies

because of the fictitious eigenfrequency problem.

Here, we extend the high-order BEM, or equivalently the locally-corrected Nyström method

(see Section 3.2), in [30] to the (direct) CFIE formulation. A key feature of this BEM is the

coincidence of field interpolation and quadrature points. This leads to simplified computation of

far-field (regular) elements in the influence matrix. Indeed, evaluation of a far-field matrix element

requires only a single computation of a kernel function and is free from interpolation error. Also,

this BEM uses second-order interpolation from triangular meshes for accurate representation of

complex geometries. Evaluation of singular and near-singular integrals on the resulting curvilinear

mesh elements is particularly challenging. We use singularity subtraction techniques to evaluate

them efficiently.

4.2 Derivation of the CFIE

Direct BIEs for elastic wave scattering can be derived in the same way as their counterparts

in acoustics and elastostatics. The underlying ideas are well-known, and some derivations are

detailed, for example, in [147, 148] for the CBIE formulation. Alternate but equivalent BIEs follow

from §13.1 in [149]. For HBIEs, [142] covers some derivations in sufficient depth. Here, we roughly

follow the outline laid out in these resources, but provide more details for clarity and rigor, wherever

necessary. We start with the partial differential equations governing the stress and displacement

fields and derive their integral representations using the concepts of reciprocity and fundamental

solutions. Specifically, reciprocity equations express the relation between two different solutions of
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the governing PDE (albeit, with different body forces, or more generally, “source” terms). When

one of the solutions is chosen as the fundamental solution, the reciprocity equations yield integral

representations. The CFIE follows readily from these integral representations.

4.2.1 Equation of Motion

Consider a linear elastic solid with a uniform mass density ρ. Let the displacement and stress

fields in the solid be represented by u(x, t) and τ(x, t), respectively, where x represents the position

coordinates with respect to a fixed coordinate system and t represents the time. The fields satisfy

the following equation of motion inside the solid [147][13, §3.2.1]

∇ · τ(x, t) + f(x, t) = ρ
∂2u(x, t)

∂t2
, (4.1)

with f(x, t) representing the body force per unit volume. Assuming that all fields are time-harmonic

with the factor e−iωt (ω ∈ R), the above equation can be re-written without time dependency as

follows

∇ · τ(x, ω) + f(x, ω) = −ρω2u(x, ω), (4.2)

which is equivalent to taking the Fourier transform of Equation (4.1) in the time variable and writing

the corresponding equation for the Fourier spectra of the fields. Henceforth, we will operate in the

frequency domain (ω−domain), and the dependence of fields on position and angular frequency

will not be shown explicitly unless when necessary.

For a homogeneous, isotropic solid with Lamé parameters λ and µ, the following constitutive

equation relates the stress and displacement fields

τ = λI (∇ · u) + µ (∇u + u∇) . (4.3)

The dyadic notation is adopted for expressing the foregoing relation compactly. The symbol I

represents the unit dyadic, and u∇ is defined as the transpose of the dyadic ∇u. For example, in

the index notation, the (i, j) component of u∇ is [u∇]ij = ∂jui. Also, throughout this thesis, for

any dyadic ab, the notation [ab]ij is used occasionally to represent its (i, j) component. Note that
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the stress tensor is symmetric, as required by the conservation of angular momentum [13, §3.2].

Substituting the constitutive relation in the equation of motion yields the following equation for

the displacement field

(λ+ µ)∇∇ · u + µ∇2u + ρω2u = −f . (4.4)

The displacement field inside a solid can be determined by solving this equation with appropriate

boundary conditions. The corresponding stress field is obtained from (4.3).

4.2.2 Reciprocity Relation

Consider an elastic solid occupying a volume V ⊂ R3 that is bounded by a surface S ⊂ R3.

Let the fields τ1 and u1 be such that they satisfy Equations (4.4) and (4.3) for a body force f1.

Similarly, let τ2 and u2 be a solution to these equations for a body force f2. We are interested in

deriving a relation involving the foregoing fields. From (4.2), we have the following two equations

∇ · τ1 − ρω2u1 = −f1, (4.5a)

∇ · τ2 − ρω2u2 = −f2. (4.5b)

Taking the dot product of (4.5a) with u2 and of (4.5b) with u1, and subtracting the resulting

equations gives

(∇ · τ1) · u2 − u1 · (∇ · τ2) = u1 · f2 − f1 · u2. (4.6)

Since the terms in the above equation are scalars, the direction in which the dot products of

equations (4.5a) and (4.5b) are taken is not relevant. However, the same operations will be repeated

for a tensor version of Equation (4.2) in the next section, where taking dot product from the left

yields different equations than taking it from the right. To maintain consistency and to avoid having

to repeat the above steps, the dot products in this section will be depicted such that they reflect the

proper direction of multiplication; for example, u2 is multiplied from the right of Equation (4.5a)

and u1 is multiplied from the left of Equation (4.5b).
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The terms on the left hand side of (4.6) can be expressed as the divergence of a vector. The

derivation of the reciprocity relation follows from an application of the Gauss-Divergence theorem

to this quantity. Towards this, consider the following identities for any vector u and tensor τ

∇ · (τ · u) = ∂i(τijuj) = ∂i(τij)uj + τij∂iuj = (∇ · τ) · u + τ : ∇u. (4.7)

Similarly,

∇ · (u · τ) = ∂i(ujτji) = ∂i(ujτij) = uj∂i(τij) + (∂iuj)τij = u · (∇ · τ) +∇u : τ. (4.8)

The second equality in (4.8) is due to symmetry of the stress tensor. Also, although the end result

of (4.8) follows readily from (4.7), the same is not true if one of the fields in the identities is a

fundamental solution that is introduced in the next section. Therefore, (4.8) is derived separately

from (4.7) and expressed in a specific form, keeping the generalization of the derivations and results

in mind. Notice that the first term on the right hand side in the foregoing identities is in the form

of the terms on the left hand side of Equation (4.6). We can rewrite (4.6) using the above identities

as follows

∇ · (τ1 · u2 − u1 · τ2) +∇u1 : τ2 − τ1 : ∇u2 = u1 · f2 − f1 · u2. (4.9)

The last two terms on the left hand side evaluate to zero for any linear elastic solid as a consequence

of the symmetries of the stiffness tensor that relates the stress and the displacement fields [13,

§5.2]. However, for isotropic solids, we can show the cancellation using the explicit expression of

the constitutive equation. Using (4.3), we can write

∇u1 : τ2 − τ1 : ∇u2 =∇u1 :
[
λI (∇ · u2) + µ (∇u2 + u2∇)

]
−[

λI (∇ · u1) + µ (∇u1 + u1∇)
]

: ∇u2 (4.10a)

= λ (∇ · u1) (∇ · u2) + µ (∇u1 : ∇u2 +∇u1 : u2∇)−

λ (∇ · u1) (∇ · u2)− µ (∇u1 : ∇u2 + u1∇ : ∇u2) (4.10b)

= 0. (4.10c)
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Therefore, Equation (4.9) reduces to the following

∇ · (τ1 · u2 − u1 · τ2) = u1 · f2 − f1 · u2. (4.11)

Integrating the above equation over V and applying the Gauss-Divergence theorem yields the

following reciprocity relation∫
S

n̂ · (τ1 · u2 − u1 · τ2) dS =

∫
V

(u1 · f2 − f1 · u2) dV, (4.12)

where n̂ is the unit vector that is normal to S and oriented away from V . In general, the unit

vector n̂ is not a constant function of x.

Equation (4.12) can be used to derive some relations analogous to the reaction theorems in

electromagnetics [150, §3.8], as described below. Assume that the solid is unbounded and that the

body forces f1 and f2 can be bounded within a finite region. Further, since the reciprocity relation

applies to any surface S that encloses the body forces, take S to be a spherical surface of radius R

that is sufficiently large to enclose the body forces. As R goes to infinity, Equation (4.26) yields

asymptotic forms of the displacement fields, which, in turn, provide asymptotic forms of the stress

fields via the constitutive relation. The asymptotic forms of the stress and displacement fields can

be used to show that the surface integral in (4.12) vanishes (in the limit R → ∞ and thus for all

surfaces that completely enclose the body forces), leading to the following “reaction theorem”∫
V

u1 · f2 dV =

∫
V

f1 · u2 dV. (4.13)

Applying this to the body forces f1(x) = δ(x−x1)ê1 and f2(x) = δ(x−x2)ê2, for any unit vectors

ê1 and ê2, results in

u1(x2) · ê2 = u2(x1) · ê1. (4.14)

In other words, the displacement at x2, in the direction ê2, created by the application of a point

body force that is located at x1 and directed along ê1, is same as that observed when both the

location and direction of the force (source) are exchanged with those of the displacement (effect).



www.manaraa.com

98

4.2.3 Fundamental Solutions

The fundamental solution for displacement field is the solution of Equation (4.4) for a Dirac-

delta body force (point source) in an unbounded solid with a boundary condition that is mentioned

later. The corresponding solution for the stress field is obtained from the constitutive relation given

by (4.3). Since body force is a vector in R3, to get the fundamental solution corresponding to any

arbitrary direction of the body force, it is sufficient to get three sets of solutions corresponding to

three cases wherein the body force points along the three axes of a rectangular coordinate system.

The displacement and stress field solutions for these three cases can be represented compactly as

second and third order tensors, respectively. Accordingly, we seek the solution of the following

equation in an unbounded elastic solid

(λ+ µ)∇∇ ·G(x,x′) + µ∇2G(x,x′) + ρω2G(x,x′) = −δ(x− x′)I (4.15)

with the condition that G(x,x′) goes to zero as |x−x′| goes to infinity. Here, G(x,x′) is a second-

order tensor representing the displacements caused at point x individually by three point body

forces that are located at x′ and directed along the three coordinate axes. From the way the above

equation is written, the second index of G(x,x′) represents the direction of the body force. For

example, the three elements in the jth column of G(x,x′) are the components of the displacement

in the case wherein the body force points along the jth coordinate axis.

It follows from Equation (4.14) that G(x,x′) equals the transpose of G(x′,x), that is, G(x,x′) =

GT (x′,x). This can be seen by choosing x1 = x, x2 = x′ in (4.14), and setting ê1 and ê2

as each of the three unit vectors along the three axes of a rectangular coordinate system. To

elaborate, we get an element-by-element equality of G(x,x′) and GT (x′,x) if we set ê1 = âi and

ê2 = âj for i, j = 1, 2, 3, where âp is the unit vector along the pth axis of a coordinate system.

Further, both (4.15) and its accompanying boundary condition are translationally and rotationally

invariant because of material homogeneity and isotropy. This invariance can be used to show that

G(x,x′) = G(x′,x). Summing up, we have the following important relations

G(x,x′) = G(x′,x) = GT (x,x′). (4.16)
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In other words, the displacement caused by a point source remains the same if we were to exchange

either the locations or the directions or both locations and directions of the source and observation.

The stress fields corresponding to G(x,x′) are given by the following third order tensor

Σ(1)(x,x′) = λI
(
∇ ·G(x,x′)

)
+ µ

(
∇G(x,x′) + G(x,x′)∇

)
, (4.17)

where the superscript [ ](1) is used to indicate that the divergence and gradient are defined with

respect to the first argument of Σ(1)(x,x′). The notation G(x,x′)∇ represents the tensor obtained

by transposing the first two indices of ∇G(x,x′). As in the case of the displacement fundamental

solution, the last index of Σ(1)(x,x′) represents the direction of the body force. Also, it is clear

from (4.17) that Σ(1)(x,x′) is symmetric with respect to its first two indices. This is a consequence

of the symmetries of the second-order stress tensor corresponding to a single body force. Further,

due to the notation that is adopted, Σ(1)(x,x′) is same as Σ(2)(x′,x) as they express the same

quantity.

The fundamental solution G(x,x′) can be expressed in terms of the longitudinal and shear wave

speeds (cp and cs, respectively) and the corresponding wavenumbers (kp and ks) as follows [30]

G(x,x′) =
CR̂R̂ +DI

4πρω2R3
, (4.18a)

where R = |x′ − x|, and

R̂ =
x′ − x

R
, (4.18b)

C = Ωse
iksR − Ωce

ikpR, (4.18c)

D = [(ksR)2 + iksR− 1]eiksR − (ikcR− 1)eikcR, (4.18d)

Ωα = −(kαR)2 − 3ikαR+ 3 for α ∈ {s, p}. (4.18e)

The relations in (4.16) can be explicitly seen in the above expression for G(x,x′). Also, G(x,x′)

is singular at x = x′ as can be verified using the asymptotic forms (as R→ 0) of C and D given in

Appendix B.1. Also, G(x,x′) is singular at x = x′ as can be verified using the asymptotic forms (as

R → 0) of C and D. It follows from Equations (4.17) and (4.18) that Σ(1)(x′,x) = −Σ(1)(x,x′).
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Figure 4.1: Schematic of an elastic solid occupying a volume V and bounded by a surface S. An

imaginary sphere centered at x′ and of radius ε is excluded from V for applying the divergence

theorem. Orientations of the unit surface normal vectors on the surfaces S and Sε are indicated by

the vectors n̂(x) and n̂(y), respectively. The surface Sε is fictitious and does not represent material

inhomogeneity.

This symmetry is due to the rotational and translational invariance of (4.15) and the boundary

condition.

Since the stress and displacement fundamental solutions are derived from the equation of motion

given by (4.2), they satisfy the following equation

∇ ·Σ(1)(x,x′) + ρω2G(x,x′) = −δ(x− x′)I. (4.19)

In place of Equation (4.5b), if we consider the above equation to be the starting point of the

derivation of the reciprocity relation, all the steps until Equation (4.11) hold true if u2(x), τ2(x)

and f2(x) are replaced with G(x,x′), Σ(1)(x,x′) and δ(x−x′)I, respectively. Dropping the subscript

in u1, τ1 and f1, an equation analogous to (4.11) can be written as shown below

∇ ·
(
τ(x) ·G(x,x′)− u(x) ·Σ(1)(x,x′)

)
= u(x)δ(x− x′)− f(x) ·G(x,x′). (4.20)

4.2.4 Integral Representation

An integral representation of displacement field can be derived by applying the Gauss-divergence

theorem to Equation (4.20). However, the theorem cannot be applied directly in the volume V as
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the fields G(x,x′) and Σ(1)(x,x′) are singular at x = x′. To exclude the singularities, consider

a modified volume Vε ⊂ V formed by the removal of a sphere of radius ε from V as shown in

Figure 4.1. Applying the divergence theorem to (4.20) in the volume Vε gives∫
S+Sε

n̂(x) ·
(
τ(x) ·G(x,x′)− u(x) ·Σ(1)(x,x′)

)
dS(x) = −

∫
Vε

f(x) · G(x,x′)dV (x), (4.21)

where dS(x) and dV (x) are the area and volume elements, respectively, in the corresponding

domains of integration. Here, for x ∈ S ∪ Sε, n̂(x) represents the unit vector that is normal to

the boundaries of Vε and directed away from it. Replacing the stress field τ on S and Sε with the

corresponding traction field t(x) = n̂ · τ, we get∫
S

(
t(x) ·G(x,x′)− u(x) ·

[
n̂(x) ·Σ(1)(x,x′)

])
dS(x) =∫

Sε

(
u(x) ·

[
n̂(x) ·Σ(1)(x,x′)

]
− t(x) ·G(x,x′)

)
dS(x)−

∫
Vε

f(x) ·G(x,x′)dV (x). (4.22)

The symmetry of Σ(1)(x,x′) in the first two indices was used in the above to interchange the

order of multiplication of u(x) and n̂(x). In the limit ε → 0, the first term on the right-hand

side evaluates to u(x′), and the second term evaluates to zero for a sufficiently smooth u(x), as

shown in Appendix B.1. Also, the limit of the last term exists for a sufficiently smooth f(x) and is

represented as the integral over the whole domain V . Thus, the displacement at any point x′ in V

can be written as follows

u(x′) =

∫
S

(
t(x) ·G(x,x′)− u(x) ·

[
n̂(x) ·Σ(1)(x,x′)

])
dS(x) +

∫
V

f(x) ·G(x,x′)dV (x). (4.23)

An explicit expression of n̂ · Σ(1)(x,x′) which can be used for evaluating one of the foregoing

limits is shown below [30, §4.1]

n̂ ·Σ(1)(x,x′) = −
(λψp + 2µC)n̂R̂ + µ(ψs + 2C)

(
R̂n̂ + n̂ · R̂I

)
+ 2µF (n̂ · R̂)R̂R̂

4πρω2R4
, (4.24a)

with the terms appearing in the above expression defined according to (4.18) and as shown below

F = Hpe
ikpR −Hse

ikpR, (4.24b)

Hα = i(kαR)3 − 6(kαR)2 − 15ikαR+ 15, (4.24c)



www.manaraa.com

102

ψα = (kαR)2(ikαR− 1)eikαR (4.24d)

for α ∈ {s, p}. An alternate expression for n̂ ·Σ(1)(x,x′) is [112]

n̂ ·Σ(1)(x,x′) = −

(
A1R̂R̂ +A2I

)
R̂ · n̂ +

(
A3n̂R̂ +A2R̂n̂

)
2πR2

, (4.25a)

where

R = x′ − x, R = |R|, R̂ =
R

R
, (4.25b)

τ = iksR, α =
kp
ks
, (4.25c)

M(τ) =
eατ (1− ατ)− eτ (1− τ)

τ2
(4.25d)

ψ(τ) = eτ −M(τ), (4.25e)

χ(τ) = eατα2 − eτ + 3M(τ), (4.25f)

A1(τ) = τχ′(τ)− 3χ(τ), (4.25g)

A2(τ) =
τψ′(τ)− ψ(τ) + χ(τ)

2
, (4.25h)

A3(τ) = χ(τ) +

(
1

2α2
− 1

)
[A1 + 2A2 + 3χ(τ)]. (4.25i)

Note that the dependence of A1, A2 and A3 on τ is not shown explicitly in (4.25a). For notational

convenience, we shall interchange x and x′ in Equation (4.23) so that x represents the location of

field observation. This gives

u(x) =

∫
S

(
t(x′) ·G(x,x′) + u(x′) ·

[
n̂(x′) ·Σ(1)(x,x′)

])
dS(x′) +

∫
V

f(x) ·G(x,x′)dV (x),

(4.26)

where we have used the fact that G(x′,x) = G(x,x′) and Σ(1)(x′,x) = −Σ(1)(x,x′). The above

equation, known as the integral representation formula, expresses the displacement at any point x

in the volume V as the sum of an integral involving the displacement and traction fields on the

boundaries and a volume integral involving the body force density.
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ρ−, λ−, µ−

S
V

V0

u−(x)

ρ+, λ+, µ+

u+(x) = uI(x) + us(x)

Figure 4.2: An unbounded and otherwise homogeneous elastic solid containing an inclusion.

ρ+, λ+, µ+

S
V

V0

uI(x)

ρ+, λ+, µ+

uI(x)

Figure 4.3: An unbounded and homogeneous elastic solid with a background displacement field

uI(x). Dashed line represents the surface S.
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4.2.5 Elastic Wave Scattering Problem

The conventional (displacement) BIE for elastic wave scattering can be derived either by taking

a limit of the integral representation formula (4.26) or by applying the divergence theorem to

Equation (4.20) in a modified volume, as done in the previous section. It is, however, required to

define the elastic wave scattering problem first. Consider two homogeneous, isotropic elastic solids,

one embedded inside the other, as shown in Figure 4.2. The embedded solid occupies the region

V ∈ R3 and is bounded by the surface S, whereas the external solid is unbounded and occupies

the region V0 = R3 \ (V ∪ S). Assume that an elastic wave, defined in terms of displacement

and stress fields, impinges on the embedded solid. The idea of impingement is inherently a time-

domain notion. In the frequency domain, the impinging (or incident) wave should be considered

as a background field, that is, a field that would be present in R3 in the absence of the embedded

solid as shown in Figure 4.3.

The embedded solid scatters the incident wave, or equivalently (in the frequency domain),

modifies the background field. Therefore, we shall refer to the embedded solid as the scatterer. Let

the mass density and Lamé constants of the scatterer be ρ−, λ− and µ−, respectively, and those

of the surrounding medium be ρ+, λ+ and µ+, respectively. Let the incident displacement field be

given by uI(x) for x ∈ R3. Then, the elastic wave scattering problem is defined as follows: given

an incident field that satisfies the wave Equation (4.4) in R3 with the material constants ρ+, λ+,

µ+ and a body force f(x) (where f(x) = 0 for x ∈ V ), find the fields us(x) and u−(x) such that

the equations of motion (4.27), transmission conditions (4.28) and radiation conditions (4.29) are

satisfied simultaneously. The equations of motion in V and V0 are as follows:

(λ+ + µ+)∇∇ · us(x) + µ+∇2us(x) + ρ+ω
2us(x) = 0 for x ∈ V0, (4.27a)

(λ− + µ−)∇∇ · u−(x) + µ−∇2u−(x) + ρ−ω2u−(x) = 0 for x ∈ V. (4.27b)

The transmission conditions are defined according to continuity of displacement and traction fields

on the interface S as shown below:

uI(x) + us(x) = u−(x), (4.28a)
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tI(x) + ts(x) = t−(x) (4.28b)

for x ∈ S, where tI(x), ts(x) and t−(x) are the traction fields on S. We assume that the traction

fields are defined using the exterior unit normal vector on S, although Equation (4.28b) does not

depend on the choice of orientation of the unit normal. The radiation conditions are as follows:

lim
r→∞

up(x) = 0, (4.29a)

lim
r→∞

us(x) = 0, (4.29b)

lim
r→∞

r

(
∂up(x)

∂r
− ikpup(x)

)
= 0, (4.29c)

lim
r→∞

r

(
∂us(x)

∂r
− iksus(x)

)
= 0, (4.29d)

where r is the radius of a sphere that is centered at an arbitrary but fixed location, and the limits

are approached uniformly in all directions around the sphere. The quantities up(x) and us(x) are

the irrotational (curl-free) and solenoidal (divergence-free) components of us(x), respectively, and

are uniquely given by

up(x) =
−1

k2
p

∇∇ · us(x), (4.30a)

us(x) = us(x)− up(x) =
1

k2
p

∇∇ · us(x) + us(x). (4.30b)

Equations (4.29a, 4.29b) are called regularity conditions and Equations (4.29c, 4.29d) are called

the Sommerfeld-Kupradze radiation conditions [151] [152, §3.2].

Remark 4.1 The following limiting cases of the material properties λ− and µ− are of interest

for scattering problems: when λ−, µ− → ∞, the displacement inside the material tends to zero,

and hence the scatterer is called a rigid scatterer. Similarly, when λ−, µ− → 0, the stress field

inside the material tends to zero, and hence the scatterer is called a soft scatterer. In the former

case, the scattering problem reduces to a boundary-value problem with the Dirichlet boundary

conditions obtained by setting u−(x) = 0 in Equation (4.28a). Likewise, in the latter case, we

get a boundary-value problem wherein the traction field on S is prescribed according to Equation

(4.28b) with t−(x) = 0.
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ρ−, λ−, µ−

S V

Vr

ρ+, λ+, µ+

Sf

Sr

Vf

Figure 4.4: A model for elastic wave scattering in UNDE applications. The incident field is assumed

to be generated by body forces present inside Vf .

Remark 4.2 Some remarks are due on the use of the above formulation for modeling the

scattering of ultrasound from defects in NDE. First, we assume that the defects are located relatively

far from the walls of the inspection specimen. Then, due to the finite speed of propagation of

waves, the interaction of incident waves with a defect is temporally separated from the interactions

involving the boundaries of the specimen: that is, the time-domain voltage signals arising due

to these two effects appear as distinct pulses separated in time. Since NDE measurements often

require only the former, it is sufficient to model the problem such that it captures this initial

response accurately. Any late time response present in the solution can be removed using window

functions in the time-domain. For the same reason, it is also sufficient to model the source of the

incident field using body forces that are placed far away from the defect; the only requirements

on the body forces are: (a) the incident field generated by them near the defect should match

that generated by the transducers, and (b) any additional scattering caused by the interaction of

incident fields with specimen boundaries should be well-separated (in time) from the initial defect

response.
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According to these assumptions, consider the model shown in Figure 4.4. The body force density

f(x) which creates the incident field is assumed to be bounded within the volume Vf ⊂ Vr, that

is, f(x) = 0 for x /∈ Vf . The inspection specimen is modeled as a sphere of radius r such that

the boundaries are relatively far from both the defect and the body forces. The total displacement

field should satisfy the following equation of motion inside Vr, which is the region inside the sphere

excluding V ∪ S

(λ+ + µ+)∇∇ · u(x) + µ+∇2u(x) + ρ+ω
2u(x) = −f(x). (4.31)

The incident displacement field satisfies the following equation for the whole region in the sphere

(λ+ + µ+)∇∇ · uI(x) + µ+∇2uI(x) + ρ+ω
2uI(x) = −f(x). (4.32)

By eliminating f(x) from the above equations, we get the following equation for x ∈ Vr

(λ+ + µ+)∇∇ · us(x) + µ+∇2us(x) + ρ+ω
2us(x) = 0, (4.33)

where us(x) := u(x)−uI(x) is defined as the scattered field. We should note that the above equa-

tion, along with the equation of motion inside the defect (4.27b) and the transmission conditions

(4.28), is not sufficient for finding a solution unless appropriate boundary conditions are prescribed

on Sr. For any choice of the boundary condition, we should ensure that a solution exists in an

appropriate function space and that it approximates the desired solution sufficiently well. Further,

boundary conditions that yield unique solutions are preferred over those that give more than one

solution, even if all such solutions are equally good approximations of the desired one, since they

simplify the process of finding a solution. The radiation conditions prescribed in Equations (4.29)

were shown to yield at least one solution by Kupradze et al. [153, §12.2, §12.5.9] [154] [155, §7.4].

The proof is rather complicated. Simpler proofs are available for scattering from soft and rigid

bodies [155, §6.12][156]. Note that the radiation conditions in [156] are equivalent to (4.29), as

shown in [157]. Uniqueness of the solution follows from Corollary 2.12 in [153]. Also, see [155, §2.4]

for uniqueness proofs for scattering from rigid and soft solids.

A physical interpretation of the scattered-field decomposition and radiation conditions is as

follows: notice that from Equation (4.23), one can write the scattered field as an integral over
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S. Therefore, the total displacement field is a sum of the incident field and an integral over S.

Further, this integral can be interpreted as the radiation due to fictitious single layer and double

layer body forces distributed over S (see [158, pp. 377-378] for an analogous description for the

vector Helmholtz equation). Therefore, the scattered field decomposition is indeed a mathematical

expression of the Huygen’s principle [147], where the total field is assumed to be a superposition of

the incident field created by primary sources and the scattered field created by secondary sources

located on S. The radiation conditions are, then, a prescription that the scattered field generated

by the secondary sources does not propagate back towards the scatterer from infinity [152, §3.1]

[158, pp. 380-381]. This is a sufficiently good approximation for modeling scattering from defects

that are relatively far from the walls of the inspection specimen.

4.2.6 Conventional Boundary Integral Equation

The conventional boundary integral equation (CBIE) [140] for elastic wave scattering is a direct

BIE that can be derived from the representation formula (4.26). Recall that the representation

formula gives the displacement field only at points x inside the volume V and not on the surface

S. This is because the derivation of the formula assumes the exclusion of a small spherical volume

around x as illustrated in Figure 4.1. However, a similar formula can be derived for points x ∈ S

if the surface S is sufficiently smooth at x.

For this, consider the exclusion of volumes around x as shown in Figures 4.5 and 4.6. The

scatterer occupies a region V and the complementary region V0 = R3 \ (V ∪ S) is occupied by the

solid embedding the scatterer. An imaginary surface Sr formed by a large sphere of radius r is

assumed for applying the radiation conditions under r → ∞. For fields satisfying the equations

of motion in the domain V0 and the radiation conditions on Sr (as r → ∞), we use Figure 4.5 as

a reference. Likewise, for fields satisfying equations of motion in V , we refer to Figure 4.6. The

excluded regions (Vε) are defined by the intersection of the surface S with a sphere of radius ε

centered at x: that is, Vε = {x′ ∈ V0 3 |x′ − x| < ε} in Figure 4.5 and Vε = {x′ ∈ V 3 |x′ − x| < ε}
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in Figure 4.6. Also, let the set of points on S that lie inside Vε be Ωε = {x′ ∈ S ∩ Vε}. Note that

the surfaces Sr and Sε are imaginary and do not represent material boundaries.

Since the scattered field satisfies the equation of motion (4.27a) in Vr \ Vε, an equation similar

to (4.22) can be written as follows:∫
(S\Ωε)∪Sr

(
ts(x′) ·G+(x,x′) + us(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′)+∫

Sε

(
us(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
]

+ ts(x′) ·G+(x,x′)
)
dS(x′) = 0, (4.34)

where the traction field is defined with respect to the unit normal oriented into Vr, which is given

by n̂′ = n̂(x′). The + subscript in the fundamental solutions indicates that they correspond to

the material properties of the external medium. Also, notice that x and x′ have been interchanged

in writing the above equation from (4.22). The integral over Sr vanishes as r → ∞ because of

the radiation conditions [152, §3.3]. In the limit ε → 0, the first term in (4.34) converges to the

corresponding Riemann integral over the surface S, which is guaranteed to exist since the kernel

is only weakly-singular, and the fourth term converges to zero. If the surface S is smooth at x

and the displacement us(x) is Hölder continuous in a neighbourhood of x, then the second term

also converges, and the limiting value is defined as a Cauchy principal value (CPV) integral over

S. A proof for the convergence of the CPV integral is discussed in Appendix B.2. The third term

converges to us(x)/2, again assuming that us(x) is Hölder continuous around x. This result follows

directly from the derivation in Appendix B.1, where we consider a similar limit. Therefore, we get

the following equation:

−
∫
S

(
ts(x′) ·G+(x,x′) + us(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′) = −1

2
us(x), (4.35)

where the integral sign with a horizontal line is defined as the CPV integral obtained by taking the

limit ε→ 0.

For the incident field, we will consider Figure 4.6, assuming, however, that the region V consists

of the medium with material properties ρ+, λ+ and µ+, instead of the scatterer. Since the incident

field satisfies the equation of motion in V \ Vε, we obtain the following equation similar to (4.22)
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ρ−, λ−, µ−

S
V

Vr

x
ρ+, λ+, µ+

b
Sǫ

b

x′
n̂′ Sr

b y′n̂(y′)

Figure 4.5: An imaginary surface Sε is used to exclude the point x from the volume in which the

divergence theorem is applied.
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ρ−, λ−, µ−

S
V

V0

xρ+, λ+, µ+
b

ǫ
Sǫ

Figure 4.6: The imaginary surface Sε projects into the scatterer. Divergence theorem can be applied

inside the scatterer minus the volume excluded by Sε.
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∫
S\Ωε

(
tI(x′) ·G+(x,x′) + uI(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′)

+

∫
Sε

(
tI(x′) ·G+(x,x′) + uI(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′) = 0, (4.36)

where the unit normal is still chosen to point away from V and the traction fields are defined

according to this choice. Again, in the limit ε→ 0, the first two terms converge to the corresponding

CPV integrals, and the third and fourth terms evaluate to 0 and −uI(x)/2, respectively. This gives

−
∫
S

(
tI(x′) ·G+(x,x′) + uI(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′) =

1

2
uI(x). (4.37)

Adding Equations (4.35) and (4.37) and noting that the total fields u(x) and t(x′) are given by

the sum of the respective scattered and incident fields, we have

−
∫
S

(
t(x′) ·G+(x,x′) + u(x′) ·

[
n̂′ ·Σ(1)

+ (x,x′)
])
dS(x′) +

1

2
u(x) = uI(x). (4.38)

Repeating the derivation of (4.36), but considering the total fields inside V \ Vε in the presence of

the scatterer (instead of the incident fields), we get the following equation

−
∫
S

(
t(x′) ·G−(x,x′) + u(x′) ·

[
n̂′ ·Σ(1)

− (x,x′)
])
dS(x′) =

1

2
u(x). (4.39)

Note that the fundamental solutions now correspond to the material properties of the scatterer.

Equations (4.38) and (4.39) form the CBIE-formulation of elastic wave scattering. Once the dis-

placement and traction fields on the surface S are determined from this formulation, the fields in

other regions can be obtained using the representation formula (4.26), thus solving the elastic wave

scattering problem defined in the previous section. Observe that although the CBIE-formulation is

implied by the scattering problem, the converse is not true. In other words, not every solution of

the CBIE-formulation is a solution to the elastic wave scattering problem, as will be demonstrated

in Chapter 6. Finally, the above equations can be derived alternatively by taking the limit of the

representation formula as x approaches the surface S, as shown in Section 4.2.9.

4.2.7 Hypersingular Boundary Integral Equation

The hypersingular boundary integral equation (HBIE) is a direct BIE similar to the CBIE. It

is also referred by the name traction BIE in the literature [159], particularly when regularization
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techniques are applied on it to get rid of hypersingular characteristics. To derive the HBIE from

the CBIE, we apply the boundary traction operator to the CBIE as described below. The following

definitions will be helpful in simplifying the notation:

U±(x,x′) := GT
±(x,x′) = G±(x,x′), (4.40)

T
(α)
± (x,x′) :=

[
n̂(x′) ·Σ(α)

± (x,x′)
]T

(4.41)

for α = 1 and 2. For q = 1, 2 and 3, differentiating the first equation in the CBIE-formulation

(4.38) by the coordinate xq gives

lim
ε→0

[
∂

∂xq

∫
S\Ωε

U+(x,x′) · t(x′) dS(x′) +
∂

∂xq

∫
S\Ωε

T
(1)
+ (x,x′) · u(x′) dS(x′)

]

+
1

2

∂u(x)

∂xq
=
∂uI(x)

∂xq
. (4.42)

Note that the order of the derivative and the limit are interchanged assuming that the derivatives

are uniformly convergent as ε→ 0. However, the order of the integral and the derivative cannot be

interchanged because the integration domain is a function of x.

One way to evaluate the derivative is to rewrite the integral such that the domain of integration

includes the entire surface S. Taking the example of the second integral on the left hand side of

(4.42), one can write∫
S\Ωε

T
(1)
+ (x,x′) · u(x′) dS(x′) =

∫
S

[
1− ηε(x,x′)

]
T

(1)
+ (x,x′) · u(x′) dS(x′), (4.43)

where ηε(x,x
′) : R3 × R3 → R is a function that evaluates to one when |x − x′| < ε and zero

otherwise. The derivative can then be moved inside the integral as shown below

∂

∂xq

∫
S\Ωε

T
(1)
+ (x,x′) · u(x′) dS(x′) =

∂

∂xq

∫
S

[
1− ηε(x,x′)

]
T

(1)
+ (x,x′) · u(x′) dS(x′) (4.44a)

=

∫
S

{[
1− ηε(x,x′)

]∂T
(1)
+ (x,x′)
∂xq

· u(x′)−T
(1)
+ (x,x′) · u(x′)

∂ηε(x,x
′)

∂xq

}
dS(x′) (4.44b)

=

∫
S\Ωε

∂T
(1)
+ (x,x′)
∂xq

· u(x′) dS(x′)−Φε(x). (4.44c)

The last term in the integrand in (4.44b) evaluates to a Dirac delta function on the closed curve

Γε = {x′ ∈ S 3 |x−x′| = ε} which forms the boundary of Ωε, and thus Φε(x) consists only of values
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of the kernel T
(1)
+ (x,x′) evaluated on Γε. In the limit ε→ 0, the terms in (4.44c) do not converge

individually, but the limit exists when the two terms are considered together. Further, Φε(x) does

not have any non-divergent terms when written as a Laurent series in the variable ε. Therefore, the

order of the integral and the derivative can be interchanged if only the finite (non-divergent) part

in the Laurent series expansion of the integral in Equation (4.44c) is retained. In contrast, for the

first term on the left hand side of Equation (4.42), decomposition of the derivative as in Equation

(4.44c) leads to a Φε(x) which converges to zero as ε → 0. Using the above arguments, Equation

(4.42) then leads to the following

lim
ε→0

∫
S\Ωε

∂U+(x,x′)
∂xq

· t(x′) dS(x′) + FP

{
lim
ε→0

∫
S\Ωε

∂T
(1)
+ (x,x′)
∂xq

· u(x′) dS(x′)

}

+
1

2

∂u(x)

∂xq
=
∂uI(x)

∂xq
, (4.45)

where FP{. . .} denotes the finite part of the terms inside the parentheses as described above.

With the definitions of the Hadamard finite part (HFP) and CPV integrals, the above equation

can be rewritten as follows in a coordinate-free notation

−
∫
S
∇U+(x,x′) · t(x′) dS(x′) + =

∫
S
∇T

(1)
+ (x,x′) · u(x′) dS(x′) +

1

2
∇u(x) = ∇uI(x). (4.46)

Here, the integral with two horizontal lines is the HFP integral. Multiplying the above by the

fourth-order stiffness tensor C+ and the unit normal vector n(x), we get

−
∫
S

n(x) · C+ : ∇U+(x,x′) · t(x′) dS(x′) + =

∫
S

n(x) · C+ : ∇T
(1)
+ (x,x′) · u(x′) dS(x′)+

1

2
n(x) · C+ : ∇u(x) = n(x) · C+ : ∇uI(x), (4.47)

where the double dot product is defined according to Equation (2.4), which is reproduced below

for convenience:

[
C : E

]
ik

= CikpqEpq (4.48)

for any fourth-order tensor C and second-order tensor E.
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To simplify the kernels in the above equation, consider the following definitions

K
(α)
± (x,x′) := n(x) · C± : ∇αU±(x,x′), (4.49a)

H
(α)
± (x,x′) := n(x) · C± : ∇αT

(α)
± (x,x′) (4.49b)

for α = 1 and 2, where the index α indicates that the gradient ∇α is taken with respect to

argument α of K
(α)
± (x,x′) and H

(α)
± (x,x′). For example, in K

(1)
± (x,x′), the gradient is taken with

respect to the variable x. Note that from the definition of T
(2)
± (x′,x) in (4.41) and Equation

(4.17), it follows that K
(2)
± (x′,x) =

[
T

(1)
± (x,x′)

]T
and

[
T

(2)
± (x′,x)

]T
= K

(1)
± (x,x′). Also, since

H
(1)
± (x,x′) = H

(2)
± (x,x′), the superscript of this kernel is dropped hereafter. Using the above

definitions, Equation (4.47) can be expressed as follows

−
∫
S

K
(1)
+ (x,x′) · t(x′) dS(x′) + =

∫
S

H+(x,x′) · u(x′) dS(x′) +
1

2
t(x) = tI(x), (4.50)

Equivalently, by switching the variable with respect to which the gradient is taken in kernel

K
(1)
+ (x,x′), we have

−−
∫
S

K
(2)
+ (x,x′) · t(x′) dS(x′) + =

∫
S

H+(x,x′) · u(x′) dS(x′) +
1

2
t(x) = tI(x), (4.51)

This is the first equation in the HBIE formulation. One may notice that the above procedure

from (4.42) to (4.47) is nothing but the application of the boundary traction operator to the first

equation in the CBIE-formulation. Repeating this process on the second equation in the CBIE

formulation, we get

−−
∫
S

K
(2)
− (x,x′) · t(x′) dS(x′) + =

∫
S

H−(x,x′) · u(x′) dS(x′)− 1

2
t(x) = 0. (4.52)

Equations (4.51) and (4.52) together form the HBIE formulation for elastic wave scattering. The

HBIE formulation as expressed in these two equations is in a form that enables direct comparison

with [139]. The HBIE formulation requires that the displacement field be C1,α Hölder continuous.

This requirement is more stringent than the one in the CBIE formulation and arises from the fact

the we rely on constructing a Laurent series of the hypersingular integrand to eliminate divergent

terms in the formulation. See Appendix B.3 for details.
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The kernel H±(x,x′) can be evaluated from the following expression [112]

H±(x,x′) =
µ±
πR3

{
R̂ · n̂′

[(
B1R̂R̂ +B2I

)
R̂ · n̂ +B2R̂n̂ +B3n̂R̂

]
+

R̂ · n̂
[
B2n̂

′R̂ +B5R̂n̂′
]

+ n̂ · n̂′
[
B2R̂R̂ +B4I

]
+[

B4n̂
′n̂ +B6n̂n̂′

] }
, (4.53)

where n̂ = n̂(x), n̂′ = n̂(x′), and

B1 = A′1τ − 5A1, (4.54a)

B2 = (A′2τ − 3A2 +A1)/2, (4.54b)

B3 = A1 +

(
1

2α2
− 1

)
(A′1τ + 2A′2τ − 6A2), (4.54c)

B4 = A2, (4.54d)

B5 = A′3τ − 3A3 = B3, (4.54e)

B6 = A3 +

(
1

2α2
− 1

)
(A′3τ + 2A2). (4.54f)

Since B5 = B3, it follows that H±(x,x′) = HT
±(x′,x).

4.2.8 Combined Field Integral Equation

As the name suggests, the combined field integral equation (CFIE) involves the combination of

the CBIE and the HBIE via a coupling parameter. The following operator definitions will be useful

in writing the CFIE formulation compactly

U±S Ψ(x) :=

∫
S

U±(x,x′) ·Ψ(x′) dS(x′), (4.55a)

αT ±S Ψ(x) := −
∫
S

T
(α)
± (x,x′) ·Ψ(x′) dS(x′), (4.55b)

αK±SΨ(x) := −
∫
S

K
(α)
± (x,x′) ·Ψ(x′) dS(x′), (4.55c)

H±SΨ(x) := =

∫
S

H±(x,x′) ·Ψ(x′) dS(x′) (4.55d)

for α = 1 and 2, where Ψ(x) is a vector field that represents either the displacement or traction,

and x is assumed to lie on the surface S. When x /∈ S, the CPV and HFP integrals have to be
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replaced with Riemann integrals. With these operator definitions, the CBIE formulation reads as

follows

−U+
S t(x) + 2T +

S u(x)− u(x)

2
= −uI(x), (4.56a)

−U−S t(x) + 2T −S u(x) +
u(x)

2
= 0. (4.56b)

The same can be expressed in a matrix form as shown below−U+
S

2T +
S −

I
2

−U−S 2T −S +
I
2


t(x)

u(x)

 =

−uI(x)

0

 . (4.57)

Similarly, the HBIE formulation is−2K+
S +
I
2
H+
S

−2K−S −
I
2
H−S


t(x)

u(x)

 =

tI(x)

0

 . (4.58)

The CFIE formulation is defined using a coupling parameter α ∈ C as follows

α(4.57) +
(1− α)

k+
p γ+

(4.58), (4.59)

where k+
p is the wavenumber of the longitudinal wave in the exterior medium and γ+ = λ+ + 2µ+.

Division of (4.58) by the constant k+
p γ

+ ensures that the terms in (4.59) have the same dimensions.

Equation (4.59) reduces to the conventional and hypersingular BIE formulations, when α = 1 and

0, respectively. An alternate way of representing the CFIE formulation is as follows

(4.57) +
β

k+
p γ+

(4.58), (4.60)

for β ∈ C. The following relations are helpful for converting from one representation to the other

β =
1− α
α

, (4.61a)

α =
1

1 + β
. (4.61b)
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4.2.9 Limit-to-the-Boundary Approach

The derivation of CBIE in Section 4.2.6 requires the exclusion of a spherical volume centered

at x. An alternative to this approach is to start with the representation formula for x /∈ S and

derive its limit as x goes to some point on S. The results of this limiting process are also applied

in deriving integral equations for objects of zero thickness such as “cracks”, as we will see in the

next section. Consider Figure 4.5 in the case when x lies in Vr instead of S. Then, from the

representation formula (4.26), we have

−us(x) =

∫
S∪Sr

ts(x′) ·G+(x,x′) dS(x′) +

∫
S∪Sr

us(x′) ·
[
n̂′ ·Σ(1)

+ (x,x′)
]
dS(x′). (4.62)

The integral over Sr tends to zero as r →∞ due to the radiation conditions. We are interested in

the limit as x goes to a point y ∈ S. The first term on the right hand side of the above equation

is continuous at y, whereas the second term is discontinuous and leads to a “jump term”, that is

lim
x→y

∫
S

ts(x′) ·G+(x,x′) dS(x′) =

∫
S

ts(x′) ·G+(y,x′) dS(x′), (4.63a)

lim
x→y

∫
S

us(x′) ·
[
n̂′ ·Σ(1)

+ (x,x′)
]
dS(x′) = −

∫
S

us(x′) ·
[
n̂′ ·Σ(1)

+ (y,x′)
]
dS(x′)− us(y)

2
. (4.63b)

Notice that the integral on the right hand side of Equation (4.63b) is a CPV integral and that x

approaches y in the direction opposite to n′. The sign of the jump term changes if the orientation

of the unit normal is flipped. The proof of (4.63b), given in Appendix B.4, assumes that the

displacement field is Hölder continuous in a neighbourhood of y and that the surface S is smooth.

Therefore, for any x ∈ S, we have

−us(x)

2
=

∫
S

ts(x′) ·G+(x,x′) dS(x′) +−
∫
S

us(x′) ·
[
n̂′ ·Σ(1)

+ (x,x′)
]
dS(x′), (4.64)

which is same as Equation (4.35). It is clear that Equations (4.37) and (4.39) for uI(x) and u−(x),

respectively, can be derived in a similar fashion, which leads to the CBIE formulation.

4.2.10 Boundary Integral Equations for Scattering from Thin Bodies

UNDE modeling often deals with very thin defects, such as cracks in metals. These defects may

be modeled either using their exact geometries or by idealizations such as open surfaces of zero-
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thickness. This section describes the application of BIE formulations to both of these cases, and

this description will itself clarify why this topic warrants a special discussion. First, define a thin

body as an object that has two compact surfaces (Sh1, Sh2 ∈ R3) separated by a small thickness (h),

which represents the largest normal distance from Sh1 to Sh2, such that there exists a bijective map

between the two surfaces and that they converge to a surface S0 ∈ R3 uniformly as the thickness

goes to zero. Further, assume that S0 is smooth and that the tangential vectors at points on Sh1

and their images in Sh2 converge (except for a factor of -1) to those at the corresponding points in

S0 uniformly. Note that the surfaces Sh1, Sh2 and S0 include their respective boundaries. Unless

mentioned otherwise, a thin object is assumed to be of non-zero thickness.

When the CBIE or HBIE formulation is applied to a thin body, any collocation scheme used for

solving the resulting equations will have to avoid the problem of ill-conditioning arising from the

fact that for any point x1 ∈ Sh1, there exists a point x2 ∈ Sh2 that is very close to x1. Therefore,

collocation at x1 and x2 will yield approximately the same equations, barring a factor of -1 in case of

the HBIE which results from the normal vectors being in opposite directions at x1 and x2. It is not

difficult to see that boundary element methods that do not use collocation are also ill-conditioned

in a similar fashion. Therefore, both conventional and hypersingular BIEs are not well-suited for

modeling scattering from thin bodies. However, since the HBIE leads to equations that differ by a

factor of -1 at x1 and x2 whereas the CBIE leads to the same equations, a combination of CBIE

and HBIE can be made non-degenerate [140, 160]. Also, in the limit of zero thickness and for some

special cases, the CBIE or HBIE can be solved to obtain the scattered fields without having to

determine the fields on the surface completely, as detailed later in this section.

To mathematically demonstrate the degeneracy of the CBIE for thin bodies, distribute the

integrals on S in (4.56) over Sh1 and Sh2 as shown below

U+
Sh1

t(x) + U+
Sh2

t(x)− 2T +
Sh1

u(x)− 2T +
Sh2

u(x) +
1

2
u(x) = uI(x), (4.65a)

U−Sh1t(x) + U−Sh2t(x)− 2T −Sh1u(x)− 2T −Sh2u(x) =
1

2
u(x). (4.65b)

Here, S is assumed to be formed by Sh1 and Sh2 alone. The description below can be trivially

generalized to the scenarios where this is not the case. Assume points x1 ∈ Sh1 and x2 ∈ Sh2, such
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that x1 and x2 converge to the point x0 ∈ S0 as h→ 0. Rewriting the above equations at x = x1,

we get

U+
Sh1

t(x1) + U+
Sh2

t(x1)− 2T +
Sh1

u(x1)− 2T +
Sh2

u(x1) +
1

2
u(x1) = uI(x1), (4.66a)

U−Sh1t(x1) + U−Sh2t(x1)− 2T −Sh1u(x1)− 2T −Sh2u(x1) =
1

2
u(x1). (4.66b)

Noting that in the limit h→ 0, the incident displacement field is continuous at x and that the total

displacement and traction fields are discontinuous, define

Ψ1(y0) := lim
h→0

Ψ(y1), (4.67a)

Ψ2(y0) := lim
h→0

Ψ(y2), (4.67b)

n̂1(y0) := lim
h→0

n̂(y1) = − lim
h→0

n̂(y2), (4.67c)

assuming that y1 ∈ Sh1, y1 ∈ Sh2 such that both y1 and y2 go to y0 as h → 0, and where Ψ is a

vector field that represents either the displacement or traction. The unit vector n̂ is the outward

pointing normal vector on S, and the vector n̂1 is defined as the unit normal vector on S0. Then,

Equations (4.63a) and (4.63b) imply the following limits

lim
h→0
U±Sh2t(x1) = U±S0

t2(x), (4.68)

lim
h→0

2T ±Sh2u(x1) = −2T ±S0
u2(x)− 1

2
u2(x). (4.69)

The negative sign in the first term on the right hand side of (4.69) is due to the difference in the

orientation of the unit normal vectors on Sh2 and S0 according to (4.67c). The sign of the jump

term in (4.69) is adjusted according to the fact that x1 approaches the surface Sh2 in the same

direction as the unit normal, unlike in (4.63b). Also, we have

lim
h→0
U±Sh1t(x1) = U±S0

t1(x), (4.70)

lim
h→0

2T ±Sh1u(x1) = 2T ±S0
u1(x). (4.71)

Therefore, in the limit h→ 0, Equations (4.66a) and (4.66b) become

U+
S0

tΣ(x0)− 2T +
S0

u∆(x0) +
1

2
uΣ(x0) = uI(x0), (4.72a)
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U−S0
tΣ(x0)− 2T −S0

u∆(x0) =
1

2
u∆(x0), (4.72b)

where ΨΣ(x0) := Ψ1(x0) + Ψ2(x0) and Ψ∆(x0) := Ψ1(x0)−Ψ2(x0), and Ψ is either the displace-

ment or traction field. The same equation is obtained if the above steps are repeated for the case

wherein collocation is performed at x2, which indicates that as h goes to zero, the CBIE formula-

tion becomes increasingly ill-conditioned due to near-degeneracy. In the limit h→ 0, observe that

both u∆(x) and uΣ(x) are unknowns in Equations (4.72). If the term containing uΣ(x) was not

present, an indirect BEM could be applied to solve for the auxiliary variables u∆(x) and tΣ(x)

on the surface S0, from which the scattered field could be obtained. The presence of the uΣ(x)

term, though, makes such BEM formulations under-determined. However, for rigid bodies, the

total displacement on S vanishes, and the CBIE formulation reduces to

U+
S0

tΣ(x0) = uI(x0). (4.73)

Therefore, the CBIE for zero-thickness rigid bodies can be solved using BEMs of the above-

mentioned type. The HBIE-formulation for bodies of zero thickness follows from the application of

the boundary-traction operator to (4.72), similar to the procedure described in Section 4.2.7. The

end result is as follows

−2K+
S0

tΣ(x0) +H+
S0

u∆(x0) +
1

2
tΣ(x0) = tI(x0), (4.74a)

−2K−S0
tΣ(x0) +H−S0

u∆(x0) =
1

2
t∆(x0). (4.74b)

For soft scatterers, the traction field tΣ is zero on S0, and the formulation reduces to

H+
S0

u∆(x0) = tI(x0). (4.75)

This equation can be solved using BEM by considering the crack-opening displacement u∆(x0) as

the unknown field.

4.3 Discretization

This section describes a collocation-based BEM for solving the CFIE-formulation. The surface of

the scatterrer is described by a curvilinear triangular mesh. The displacement and traction fields are
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approximated using non-conforming elements (basis functions) defined on the curvilinear triangular

mesh. The coefficients of the basis functions form the degrees of freedom. They are determined

by performing collocation at quadrature points on the triangles and solving the resulting linear

system. This BEM can also be viewed as a locally-corrected Nyström method due to the specific

choice of basis functions that define the boundary elements. The method presented here closely

follows [30, Chap. 4].

4.3.1 Mesh Interpolation

Given a triangular mesh, defined by a list of points (nodes) on the actual surface of the scatterer

and a prescription of their connectivity (in the form of triangles), one can construct an approx-

imation of that surface by parametric interpolation over the mesh. The solution of the CFIE-

formulation is obtained over this surface approximation (S ⊂ R3). Assume a Cartesian coordinate

system wherein the position vectors are described by x = (x1, x2, x3). Let the mesh consist of NP

triangular patches with N mesh nodes per each patch. Let the position vectors of the N points for

the patch indexed by the integer p be given by r
(p)
1 , r

(p)
2 . . . r

(p)
N . Consider interpolation parameters

ξ1 and ξ2 lying in the set Ω = {ξ = (ξ1, ξ2) ∈ R2 | ξ1 + ξ2 ≤ 1}. The interpolation scheme is defined

using polynomial functions of the interpolation parameters. An interpolation scheme is said to be

of order M if it exactly interpolates all surfaces whose coordinates can all be represented in terms

of bivariate-polynomials (of the same two parameters) of degree less than or equal to M .

We need (M + 1)(M + 2)/2 points per patch for an interpolation of order M . This gives N = 3,

6, 10, etc. for interpolations of order M = 1, 2, 3, etc., respectively. Further, according to the

prescribed mesh connectivity and node ordering (within a triangle), we associate the N mesh nodes

with the following N points in the parameter space

ξ̃jk =

(
j

M
,
k

M

)
(4.76)
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for 0 ≤ j, k ≤ M and j + k ≤ M . Therefore, the mesh nodes r
(p)
1 , r

(p)
2 . . . r

(p)
N can be renamed as

r
(p)
jk , for j, k in the foregoing range. The interpolation function corresponding to the patch with

index p, represented by x(p) : Ω→ R3, is defined as follows

x(p)(ξ) =

M∑
j=0

∑
k≤M−j

Pjk(ξ)r
(p)
jk , (4.77)

where the interpolation polynomial Pjk(ξ) is given by

Pjk(ξ) := Qj(ξ1) Qk(ξ2) Ql(ξ3), (4.78)

with l = M − j − k, ξ3 = 1− ξ1 − ξ2, and

Qs(ξ) :=
1

s!

s−1∏
k=0

(Mξ − k) for 0 < s ≤M, Q0(ξ) = 1. (4.79)

It can be verified that

x(p)(ξ̃jk) = r
(p)
jk . (4.80)

Discretizations of order upto (and including) two are considered in the implementation presented

in this thesis.

From the above interpolation function, we get the following interpolation surface corresponding

to the patch p

Sp = {x ∈ R3 | x = x(p)(ξ) for some ξ ∈ Ω}. (4.81)

The surface approximation of the scatterer is then obtained by the union of all patch-wise interpo-

lation surfaces:

S =

Np⋃
p=1

Sp. (4.82)

Note that this is not a disjoint union since for any two adjacent patches indexed by p and q, Sp

and Sq overlap at the common edge. In other words, the surface S is made up of continuous, or

conformal, curvilinear triangles. Finally, define two tangent vectors e
(p)
j (ξ), for j = 1, 2, and a

normal vector e
(p)
3 (ξ) on Sp as follows

e
(p)
1 (ξ) :=

∂x(p)(ξ)

∂ξ1
, (4.83a)
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e
(p)
2 (ξ) :=

∂x(p)(ξ)

∂ξ2
, (4.83b)

e
(p)
3 (ξ) := e

(p)
1 (ξ)× e

(p)
2 (ξ). (4.83c)

These three vectors are linearly independent and, thus, form a basis in R3. The fields on Sp are

expressed in terms of these vectors, as shown in the next section. The Jacobian matrix of x(p)(ξ)

is given by

Jm(ξ) =

[
∂x(p)(ξ)

∂ξ1

∂x(p)(ξ)

∂ξ2

]
=
[
e

(p)
1 (ξ) e

(p)
2 (ξ)

]
, (4.84)

assuming that the components of x(p)(ξ) are written as column vectors. We define the “Jacobian”

as the positive square root of the determinant of JTm(ξ)Jm(ξ), which can be expressed as

J (ξ) =
√
g11(ξ)g22(ξ)− g12(ξ)g21(ξ), (4.85)

where gjk(ξ) = e
(p)
j (ξ) · e(p)

k (ξ) for j, k ∈ {1, 2}. One may observe that the Jacobian is the vector

magnitude of e
(p)
3 (ξ).

4.3.2 Field Expansion

The displacement and traction fields on a triangle are defined using interpolation from Nn points

inside it. The values of the fields at the interpolation nodes are the degrees of freedom (DOFs)

which need to be determined in the BEM. This can be viewed as a basis function expansion wherein

the values of the fields at the interpolation nodes are the expansion coefficients. Since the fields are

vectors, three components are needed to express the field at every interpolation node. Therefore,

in every triangle, there are 3Nn vector basis functions each for the displacement and traction fields.

Consider the displacement field u(x) for x ∈ S. The triangles are assumed to be indexed by

the variable p. Quantities that vary across triangles are superscripted by p. Let the displacement

field on triangle p be given by

u(p)(x) =


u(x) if x ∈ Sp

0 otherwise

. (4.86)
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Note that if x ∈ Sp, then there exists a ξ ∈ Ω such that x = x(p)(ξ). Consider Nn field interpolation

points whose positions in the parameter space are defined, independently of p, by ξi = (ξi1, ξi2, ξi3) ∈

Ω for i = 1, 2, . . . Nn. The corresponding position vectors are given by y
(p)
i = x(p)(ξi).

We first write the fields at each field interpolation point inside the triangle as a linear combi-

nation of the basis vectors defined in (4.83), that is,

u
(p)
i := u(p)(y

(p)
i ) = u

(p)
i1 e

(p)
1 (ξi) + u

(p)
i2 e

(p)
2 (ξi) + u

(p)
i3 e

(p)
3 (ξi), (4.87)

where the coefficients u
(p)
i1 , u

(p)
i2 and u

(p)
i3 are the components of the displacement vector in the

given basis. Associating one vector basis function to each component of the displacement at each

interpolation point, and writing the displacement field as a linear combination of these components

gives

u(p)(x) =

Nn∑
i=1

[
u

(p)
i1 b

(p)
i1 (x) + u

(p)
i2 b

(p)
i2 (x) + u

(p)
i3 b

(p)
i3 (x)

]
, (4.88)

where b
(p)
iα : Sp → R3 (for α = 1, 2, 3) is the basis function corresponding to the αth field component

at the ith field interpolation point in triangle p. The same can be expressed in the dyadic notation

as

u(p)(x) =

Nn∑
i=1

L
(p)
i (x) · u(p)

i , (4.89)

where L
(p)
i (x) is a field interpolation dyad which satisfies the relation L

(p)
i (x) · e(p)

α (ξi) = b
(p)
iα (r).

The basis functions b
(p)
iα (r) (for α = 1, 2, 3) corresponding to the point i are chosen such that

they vanish for x = y
(p)
j , j 6= i, and are equal to e

(p)
α (ξi) at x = y

(p)
i . In terms of L

(p)
i (x), this

means that

L
(p)
i (y

(p)
j ) = Īδij (4.90)

for i, j = 1, 2, 3 . . . Nn. This can be achieved by setting

b
(p)
iα (x) = Li(ξ)e(p)

α (ξ), (4.91)
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Table 4.1: Quadrature rules

Rule Order Number of Points

0 1 1

1 2 3

2 4 6

3 6 12

where ξ is such that x = x(p)(ξ), and Li : Ω→ R are functions such that

Li(ξj) = δij (4.92)

for i, j = 1, 2 . . . Nn. For traction fields, the functions L̃i(ξ), defined according to (4.93), are used

in place of Li(ξ).

L̃i(ξ) =
J (ξi)

J (ξ)
Li(ξ), (4.93)

where J (ξ) is the Jacobian function defined in (4.85). The reason for this rather odd choice is

to allow cancellation of the Jacobian in singular integrals and is explained in Appendix C.1. It

remains to specify the construction of the functions Li(ξ). This requires a description of the choice

of the field interpolation points.

4.3.3 Field Interpolation Points

The field interpolation points in a triangle are chosen to coincide with quadrature points on

it. Therefore, corresponding to different quadrature rules, we get different number of interpolation

points. This implementation is based on the symmetric Gaussian quadrature rules due to Dunavant

[161]. It is not difficult to extend the method to other quadrature rules. Table 4.1 gives the order

(degree of exactness) and corresponding number of points for the four quadrature rules considered

in this work.

The interpolation functions Li(ξ) are constructed using polynomials in the variables ξ1 and ξ2.

The natural, though not the best, choice for such a construction is by the linear combination of
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monomials. Consider the set of monomials in two variables (ξ1, ξ2 ∈ R) of degree less than or equal

to M

B2
M = {ξa1ξb2 |a, b ∈ Z≥0, a+ b ≤M}. (4.94)

The number of elements in B2
M is given by

Nb =
(M + 1)(M + 2)

2
. (4.95)

For M = 0, 1, 2 and 3, we get Nb = 1, 3, 6 and 10, respectively. Constructing the functions Li(ξ)

from a linear combination of the elements of B2
M gives

Li(ξ) =

Nb∑
k=1

AikPk(ξ1, ξ2), (4.96)

where Pk(ξ1, ξ2) are the elements of B2
M and Aik ∈ R are the coefficients. There are Nb coefficients

for each of the Nn functions. But Equation (4.90) prescribes Nn conditions for each function. To

be able to uniquely determine the coefficients, we need Nn to equal Nb. Table (4.1) indicates that

this condition is obtained only for Rules 0, 1 and 2. For Rule 3, the number of coefficients is 10,

whereas the number of conditions is 12, and a solution for the coefficients may not exist. Therefore,

set B2
3 is augmented with two fourth-degree monomials – ξ3

1ξ2 and ξ1ξ
3
2 . The coefficients are, then,

determined according to the following equation:

Li(ξj) =

Nn∑
k=1

AikPk(ξj1, ξj2) = δij (4.97)

for j = 1, 2, 3 . . . Nn. This can be expressed compactly in the Einstein summation convention as

follows

Lij = AikPkj = δij , (4.98)

where Lij = Li(ξj) and Pkj = Pk(ξj1, ξj2). The condition number of the matrix Pkj depends on

the choice of functions used for constructing the interpolation polynomials. When the number of

quadrature (equivalently, interpolation) points is large, monomial sets are not suitable for construct-

ing interpolation functions as they lead to matrices with high condition numbers. Additionally in
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that case, the resultant coefficients involve very large numbers, which increases cancellation errors

in the evaluation of interpolation functions. The choice of the quadrature rule is also crucial as

the distribution of quadrature (interpolation) points affects the accuracy of interpolation schemes

involving high-degree polynomials.

4.3.4 Matrix Equations

This section describes discretization of the CFIE-formulation according to the mesh and field

interpolations mentioned above. Equation (4.51) in the HBIE-formulation is used to illustrate the

discretization procedure. The integrals over S in (4.51) can be decomposed over the curvilinear

triangles, as shown below using the example of one of the integrals:

=

∫
S

H+(x,x′) · u(x′) dS(x′) =

NP∑
p=1

=

∫
Sp

H+(x,x′) · u(x′) dS(x′). (4.99)

The displacement field on triangle p is

u(p)(x′) =

Nn∑
i=1

Li(ξ)
[
u

(p)
i1 e

(p)
1 (ξ) + u

(p)
i2 e

(p)
2 (ξ) + u

(p)
i3 e

(p)
3 (ξ)

]
, (4.100)

where ξ ∈ Ω is such that x′ = x(p)(ξ). Therefore,

=

∫
S

H+(x,x′) · u(x′) dS(x′) =

NP∑
p=1

Nn∑
i=1

u
(p)
iα =

∫
Sp

Li(ξ) H+(x,x′) · e(p)
α (ξ) dS(x′), (4.101)

where summation over α = 1, 2, 3 is implied. Noting that the area element on Sp is given by

dS(x′) =

∥∥∥∥∥∂x(p)(ξ)

∂ξ1
× ∂x(p)(ξ)

∂ξ2

∥∥∥∥∥ dξ1dξ2 = J (ξ)dξ1dξ2, (4.102)

the integration can be performed in the parametric space Ω as follows

=

∫
S

H+(x,x′) · u(x′) dS(x′) =

NP∑
p=1

Nn∑
i=1

u
(p)
iα =

∫
Ω
Li(ξ) H+(x,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2, (4.103)

where x′ = x(p)(ξ).

Applying the above procedure to all the integrals in Equation (4.51) yields the following equation

Np∑
p=1

Nn∑
i=1

[
− t(p)iα −

∫
Ω
L̃i(ξ) K

(2)
+ (x,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2+

u
(p)
iα =

∫
Ω
Li(ξ) H+(x,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2

]
+

1

2
t(x) = tI(x) (4.104)
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for x ∈ S. We discretize this equation by performing collocation at the field interpolation points.

Therefore,

Np∑
p=1

Nn∑
i=1

[
− t(p)iα −

∫
Ω
L̃i(ξ) K

(2)
+ (y

(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2+

u
(p)
iα =

∫
Ω
Li(ξ) H+(y

(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2

]
+

1

2
t(y

(q)
j ) = tI(y

(q)
j ) (4.105)

for each q ∈ {1, 2, . . . Np} and j ∈ {1, 2, . . . N} and where y
(p)
j is the jth field interpolation point

on triangle q. Note that the above equation is a vector equation. To obtain a linear system of

equations with t
(p)
iα and u

(p)
iα as unknowns, we take its dot product with ẽ

(q)
β (ξj) for β ∈ {1, 2, 3},

where ẽ
(q)
β (ξj) are vectors that satisfy ẽ

(q)
β (ξj) · e(p)

α (ξj) = δαβ for α, β ∈ {1, 2, 3}. Note that this

definition of ẽ
(q)
β (ξj) guarantees uniqueness of these vectors. Also, since e

(p)
1 (ξj) and e

(p)
2 (ξj) span

the tangent space at ξj , the vector ẽ
(p)
3 (ξj) is normal to the surface. Similarly, ẽ

(p)
1 (ξj) and ẽ

(p)
2 (ξj)

lie in the tangent space. We know that

t(y
(q)
j ) = t(q)(y

(q)
j ) =

Nn∑
i=1

L̃i(ξj)
[
t
(q)
i1 e

(q)
1 (ξj) + t

(q)
i2 e

(q)
2 (ξj) + t

(q)
i3 e

(q)
3 (ξj)

]
(4.106a)

=

Nn∑
i=1

δij

[
t
(q)
i1 e

(q)
1 (ξj) + t

(q)
i2 e

(q)
2 (ξj) + t

(q)
i3 e

(q)
3 (ξj)

]
(4.106b)

= t
(q)
j1 e

(q)
1 (ξj) + t

(q)
j2 e

(q)
2 (ξj) + t

(q)
j3 e

(q)
3 (ξj). (4.106c)

Equation (4.106b) follows from (4.106a) due to coincidence of the collocation and field interpolation

points. Therefore (4.105) can be written as

Np∑
p=1

Nn∑
i=1

[
− t(p)iα −

∫
Ω
L̃i(ξ) ẽ

(q)
β (ξj) ·K(2)

+ (y
(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2+

u
(p)
iα =

∫
Ω
Li(ξ) ẽ

(q)
β (ξj) ·H+(y

(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2

]
+

1

2
t
(q)
jβ = ẽ

(q)
β (ξj) · tI(y(q)

j ). (4.107)

Arrange the unknown displacement and traction coefficients separately into lists with a single

index determined from p, i, α. Then, define the integrals

Z±Kmn := −
∫

Ω
L̃i(ξ) ẽ

(q)
β (ξj) ·K(2)

± (y
(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2, (4.108a)
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Z±Hmn := =

∫
Ω
Li(ξ) ẽ

(q)
β (ξj) ·H±(y

(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2, (4.108b)

where the index n is determined from p, i, α, and m is determined from q, j, β according the

above-mentioned ordering of the unknown coefficients. The HBIE-formulation, then, leads to the

following matrix equation −Z+
K + 1

2I Z+
H

−Z−K − 1
2I Z+

H


 t̃

ũ

 =

t̃
I

0

 , (4.109)

where Z±K and Z±H are square sub-matrices of size 3NPNn whose elements are defined by (4.108).

The vectors t̃ and ũ of size 3NPNn × 1 store the unknown traction and displacement coefficients,

respectively, in the above-mentioned order, and I is the identity matrix of size 3NPNn. The matrix

formed by the sub-matrices Z±K and Z±H is known as the influence matrix. Numerical evaluation of

the influence matrix is explained in the following sections. Note that every element of the influence

matrix involves an integral associated with a collocation point y
(q)
j and a triangle Sp on which the

integration is performed.

4.3.5 Far-field Matrix Elements

When the collocation point y
(p)
j is not close to Sp, the integral is regular and is evaluated using

the same quadrature rule that defines the field interpolation points, as shown below:

Z±Kmn =

Nn∑
k=1

wkL̃i(ξk) ẽ
(q)
β (ξj) ·K(2)

± (y
(q)
j ,y

(p)
k ) · e(p)

α (ξk)J (ξk) (4.110a)

=

Nn∑
k=1

wkδik ẽ
(q)
β (ξj) ·K(2)

± (y
(q)
j ,y

(p)
k ) · e(p)

α (ξk)J (ξk) (4.110b)

= wi ẽ
(q)
β (ξj) ·K(2)

± (y
(q)
j ,y

(p)
i ) · e(p)

α (ξi)J (ξi) (4.110c)

Similarly,

Z±Hmn = wi ẽ
(q)
β (ξj) ·H±(y

(q)
j ,y

(p)
i ) · e(p)

α (ξi)J (ξi). (4.111)
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4.3.6 Near-field Matrix Elements

4.3.6.1 Singular Integrals

When the collocation point lies inside Sp, the integral is singular, and can be expressed in the

following general form

I = =

∫
Ω
F (ξ1, ξ2) dξ1dξ2. (4.112)

Here, the function F : Ω→ C is assumed to be hypersingular. Strongly-singular and weakly-singular

integrands occur as special cases of the hypersingular function. When F (ξ1, ξ2) is strongly-singular,

the foregoing HFP integral coincides with the corresponding CPV integral. Similarly, when F (ξ1, ξ2)

is weakly-singular, the HFP integral coincides with the Riemann integral. Generally, a change of

variables transformation is applied from (ξ1, ξ2) to new variables (η1, η2) for evaluating the integrals.

The reason for this is mentioned later. Since the case wherein no transformation is applied can be

considered as an instance of application of the identity transformation, the general form of above

integral can be rewritten as follows

I = =

∫
Ωη

F (η1, η2) dη1dη2, (4.113)

where the Jacobian of the transformation is absorbed into the integrand. The function F in the

above equation is not the same as in (4.112); the letter F is reused to represent the integrand. Note

that F is singular at some point (η01, η02) ∈ Ωη if there is no singularity cancellation due to the

Jacobian of the transformation from (ξ1, ξ2) to (η1, η2), which is the case for all the transformations

considered here.

Transform the integral into polar coordinates (ρ, θ) centered at the point of singularity and

defined according to (4.114).

ρ =
√

(η1 − η01)2 + (η2 − η02)2, (4.114a)

θ = arctan

(
η1 − η01

η2 − η02

)
. (4.114b)

The integral I can, then, be expressed as

I = =

∫
Γ
F (ρ, θ) dρ dθ. (4.115)
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Again, the Jacobian of the polar coordinate transformation is absorbed into the integrand, which is

still represented by the letter F . The domain Γ is defined according to the location of the singularity

point (η01, η02) relative to the boundaries of the triangle. The integrals in the general form given

by (4.115) are evaluated using the singularity subtraction technique developed in [162], as shown

below. Assume that F (ρ, θ) satisfies the following Laurent series expansion

F (ρ, θ) =
F−2(θ)

ρ2
+
F−1(θ)

ρ
+O(1). (4.116)

For strongly-singular integrands, F−2(θ) = 0, and for weakly-singular integrands, both F−2(θ) and

F−1(θ) are zero. Therefore, in the weakly-singular case, the integral in (4.115) is evaluated directly

without any singularity subtraction. In all other cases, the divergent terms are subtracted from the

integrand and integrated separately, as shown below

=

∫
Γ
F (ρ, θ) dρ dθ = FP

{
lim
ε→0+

( 2π∫
0

ρ̂(θ)∫
α(ε,θ)

[
F (ρ, θ)− F−2(θ)

ρ2
− F−1(θ)

ρ

]
dρ dθ (4.117a)

+

2π∫
0

ρ̂(θ)∫
α(ε,θ)

F−1(θ)

ρ
dρ dθ +

2π∫
0

ρ̂(θ)∫
α(ε,θ)

F−2(θ)

ρ2
dρ dθ

)}

:= I0 + I−1+I−2. (4.117b)

Here, α(ε, θ) is the value of ρ on the boundary of Ωε in the transformed coordinates, and ρ̂(θ) is a

function of θ that represents the distance to the edges of the triangular integration domain.

The integral over ρ in I0 is regular and can be evaluated using Gaussian quadrature rules. The

Taylor series expansion of α(ε, θ) in the variable ε is required to evaluate the other ρ-integrals.

α(ε, θ) = α(0, θ) + ε
∂α(ε, θ)

∂ε

∣∣∣∣
ε=0

+
ε2

2

∂2α(ε, θ)

∂ε2

∣∣∣∣
ε=0

+O(ε3) (4.118a)

= εβ(θ) + ε2γ(θ) +O(ε3). (4.118b)

The functions β(θ) and γ(θ) can be obtained by inversion of the Taylor series of the curve |x′−x| = ε

about ρ = 0 [162]. Then,

I−1 = lim
ε→0+

2π∫
0

F−1(θ) [ ln(ρ̂(θ))− ln(α(ε, θ)) ] dθ (4.119a)
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=

2π∫
0

F−1(θ) ln(ρ̂(θ))dθ − lim
ε→0+

2π∫
0

F−1(θ) ln(εβ(θ))dθ (4.119b)

=

2π∫
0

F−1(θ) ln

(
ρ̂(θ)

β(θ)

)
dθ − lim

ε→0+
ln ε

2π∫
0

F−1(θ)dθ =

2π∫
0

F−1(θ) ln

(
ρ̂(θ)

β(θ)

)
dθ. (4.119c)

The last equality follows from the fact that F−1(θ) = −F−1(θ + π) for the kernels under consider-

ation. Similarly,

I−2 = FP

 lim
ε→0+

2π∫
0

F−2(θ)

[
− 1

ρ̂(θ)
+

1

α(ε, θ)

]
dθ

 (4.120)

= −
2π∫
0

F−2(θ)

ρ̂(θ)
dθ + FP

 lim
ε→0+

2π∫
0

F−2(θ)

εβ(θ)

(
1− εγ(θ)

β(θ)

)
dθ

 (4.121)

= −
2π∫
0

F−2(θ)

[
1

ρ̂(θ)
+

γ(θ)

β2(θ)

]
dθ + FP

 lim
ε→0+

1

ε

2π∫
0

F−2(θ)

β(θ)
dθ

 (4.122)

= −
2π∫
0

F−2(θ)

[
1

ρ̂(θ)
+

γ(θ)

β2(θ)

]
dθ. (4.123)

The Laurent series expansions corresponding to various kernels in the CFIE-formulation are given

in Appendix C.1.

The integrals over θ are nearly-singular when the aspect ratio of the triangle Sp is large or

when the collocation point lies very close to the edges of Sp [163]. The methods proposed in [163]

are adopted for overcoming the near-singularity problem in both of these cases. The following

transformation from ξ to η solves the problem due to triangles of large aspect ratios:η1

η2

 = T0

ξ1

ξ2

 , (4.124)

where the transformation matrix T0 is given by

T0 =

1 η
(2)
1

0 η
(2)
2

 , η
(2)
1 =

g12(ξ0)

g11(ξ0)
, η

(2)
2 =

J (ξ0)

g11(ξ0)
(4.125)
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and ξ0 ∈ Ω corresponds to the collocation point. The functions gij (i, j = 1, 2) are defined according

to (4.85). The inverse transformation is

T−1
0 =


1 −η

(2)
1

η
(2)
2

0
1

η
(2)
2

 (4.126a)

=


1 −g12(ξ0)

J (ξ0)

0
g11(ξ0)

J (ξ0)

 . (4.126b)

The Jacobian of the transformation from ξ to η, which is the determinant of T−1
0 , is therefore a

constant and given by

J̃ (η) = |T−1
0 | =

g11(ξ0)

J (ξ0)
. (4.127)

Near-singularity due to the collocation point being close to the edges is resolved by the application

of a sigmoidal transformation [163].

4.3.6.2 Nearly-singular Integrals

When the collocation point lies very close to Sp but not inside it, the BEM integral is nearly-

singular. Evaluation of such integrals is tougher than that of singular integrals since the apparent

order of singularity can be very large, as shown later. For this reason, singularity cancellation

schemes such as the ones considered in [164, 165] cannot be applied here. Indeed, for elastodynamic

BIEs, this topic is not well-addressed in the literature. For example, there is no mention of nearly-

singular integrals in [112, 166, 167]. An analysis of three integration methods was presented in [168]

wherein the authors conclude that conversion of nearly hypersingular integrals to nearly weakly-

singular integrals is the most efficient among the three examined methods. This conversion is based

on the subtraction of some terms resulting from the Taylor series expansion of the density function

and integrating them separately. However, this method does not account for all the apparent orders

of singularity, as will be clear from the analysis presented this section. The singularity subtraction
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procedure described here is more complicated as it involves constructing series expansions of the

whole integrand. The fundamental idea underlying this method is rather simple and well-known.

The complexity is in the details.

The singularity subtraction procedure for the integrals corresponding to the H±(x,x′) kernel is

described here. It is extended to other kernels in Appendix C.2. Nearly-singular integrals involving

the H±(x,x′) kernel can be expressed in the following form

IH =

∫
Ω

H(x0, ξ) · φ(ξ)J (ξ) dξ1dξ2, (4.128)

where x0 = x(q)(ξj) is the collocation point and

H(x0, ξ) := ẽ
(q)
β (ξj) ·H±(x0,x

(p)(ξ)), (4.129a)

φ(ξ) := Li(ξ)e(p)
α (ξ). (4.129b)

The collocation point is very close to triangle Sp. Also, the hypersingular integral is replaced with

a Riemann integral since the integral is not truly singular. Let triangle Sp be extended to S̃p as

defined below

S̃p = {x ∈ R3 | x = x(p)(ξ) for some ξ ∈ R3}. (4.130)

Let the projection of x0 on S̃p be x̃ = x(p)(ξ̃) for some ξ̃ ∈ R2. Define a transformation from ξ

to η by replacing ξ0 in Equation (4.125) with ξ̃. According to this transformation, there exists a

point η̃ ∈ R2 which corresponds to ξ̃. Transforming the integral into polar coordinates centered at

η̃ yields

IH =

∫
Γ
F̃ (ρ, θ)dρdθ, (4.131)

with F̃ (ρ, θ) = H ·φJρ, where J(η) = J (ξ(η)) J̃ (η), and H, φ and J should be seen as functions

of ρ and θ. Note that if the point of projection lies outside the triangle, then the ρ-limits for Γ are

defined using only two subtriangles similar to the procedure in Appendix C.2.5 (see Figure C.1).

If the conventional method of dividing the domain into three subtriangles is applied, the integral

becomes hypersingular when d = 0, which typically happens when the scatterer is flat. Then the

integral has to be treated according to the methods in Section 4.3.6.1.
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Recall that, from (4.53), the kernel H±(x,x′) is given by

H±(x,x′) =
µ±
πR3

{
R̂ · n̂′

[(
B1R̂R̂ +B2I

)
R̂ · n̂ +B2R̂n̂ +B3n̂R̂

]
+

R̂ · n̂
[
B2n̂

′R̂ +B5R̂n̂′
]

+ n̂ · n̂′
[
B2R̂R̂ +B4I

]
+[

B4n̂
′n̂ +B6n̂n̂′

] }
. (4.132)

Therefore, F̃ (ρ, θ) = H · φJρ is in the general form

F̃ (ρ, θ) = ẽ ·H(x,x′) · φJρ =
µ

πR3
ẽ ·
{

R̂ · n̂′
[(
B1R̂R̂ +B2I

)
R̂ · n̂ +B2R̂n̂ +B3n̂R̂

]
+

R̂ · n̂
[
B2n̂

′R̂ +B5R̂n̂′
]

+ n̂ · n̂′
[
B2R̂R̂ +B4I

]
+[

B4n̂
′n̂ +B6n̂n̂′

] }
· φJρ. (4.133)

Series expansions of each term about ρ = 0 are obtained separately and subtracted from the

integrand to make it smooth. The subtracted terms are integrated analytically in the ρ-direction.

First term. Consider the first term for example

F̃1(ρ, θ) =
µ

πR3
B1(R̂ · n̂′)(ẽ · R̂)(R̂ · φ)(R̂ · n̂) Jρ (4.134a)

=
µ

πR7
B1(R · n̂′)(ẽ ·R)(R · φ)(R · n̂) Jρ (4.134b)

=
µ

πR7
B1(R · e3)(ẽ ·R)(R · φ)(R · n̂) J̃ (η)ρ, (4.134c)

where a factor of J was combined with the unit vector at x′ to obtain the basis vector e3. Expand

each of the quantities in the above expression in terms of their Taylor series expansions about ρ = 0

R = d + ρC + ρ2D +O(ρ3), (4.135a)

Bj = B̃j,0 + ρB̃j,1 + ρ2B̃j,2 +O(ρ3) (j = 1, 2, . . . 6), (4.135b)

φ = Φ0 + ρΦ1 + ρ2Φ2 +O(ρ3), (4.135c)

e3 = P0 + ρP1 + ρ2P2 +O(ρ3), (4.135d)
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where the tilde accent is used for coefficients of the Taylor series of Bj to distinguish them from

those defined about R = 0. Note that when ρ = 0, the vector R represents the vector between the

collocation point and the projection point x̃. The following definitions will be useful in deriving

the series expansions

R · e3 =
[
d + ρC + ρ2D +O(ρ3)

]
·
[
P0 + ρP1 + ρ2P2 +O(ρ3)

]
(4.136a)

= d ·P0 + ρd ·P1 + ρ2 (d ·P2 + D ·P0) +O(ρ3) (4.136b)

:= M0,0 + ρM0,1 + ρ2M0,2 +O(ρ3), (4.136c)

ẽ ·R = ẽ · d + ρẽ ·C + ρ2ẽ ·D +O(ρ3) (4.136d)

:= M1,0 + ρM1,1 + ρ2M1,2 +O(ρ3), (4.136e)

R · φ = d ·Φ0 + ρ (d ·Φ1 + C ·Φ0) + ρ2 (d ·Φ2 + Φ0 ·D + C ·Φ1) +O(ρ3) (4.136f)

:= M2,0 + ρM2,1 + ρ2M2,2 +O(ρ3), (4.136g)

n̂ ·R = n̂ · d + ρn̂ ·C + ρ2n̂ ·D +O(ρ3) (4.136h)

:= M3,0 + ρM3,1 + ρ2M3,2 +O(ρ3), (4.136i)

ẽ · φ = ẽ ·Φ0 + ρẽ ·Φ1 + ρ2ẽ ·Φ2 +O(ρ3) (4.136j)

:= M4,0 + ρM4,1 + ρ2M4,2 +O(ρ3), (4.136k)

n̂ · φ = n̂ ·Φ0 + ρn̂ ·Φ1 + ρ2n̂ ·Φ2 +O(ρ3) (4.136l)

:= M5,0 + ρM5,1 + ρ2M5,2 +O(ρ3), (4.136m)

ẽ · e3 = ẽ ·P0 + ρẽ ·P1 + ρ2ẽ ·P2 +O(ρ3) (4.136n)

:= M6,0 + ρM6,1 + ρ2M6,2 +O(ρ3), (4.136o)

e3 · φ =
[
P0 + ρP1 + ρ2P2 +O(ρ3)

]
·
[
Φ0 + ρΦ1 + ρ2Φ2 +O(ρ3)

]
(4.136p)

= P0 ·Φ0 + ρ [P0 ·Φ1 + Φ0 ·P1] + ρ2 [P0 ·Φ2 + P2 ·Φ0 + P1 ·Φ1] +O(ρ3) (4.136q)

:= M7,0 + ρM7,1 + ρ2M7,2 +O(ρ3), (4.136r)

n̂ · e3 = n̂ ·P0 + ρn̂ ·P1 + ρ2n̂ ·P2 +O(ρ3) (4.136s)

:= M8,0 + ρM8,1 + ρ2M8,2 +O(ρ3). (4.136t)
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In the Taylor series of R · e3, we have C · e3 = 0 because C is a linear combination of the basis

vectors e1 and e2, which are tangential to the surface. As a result, coefficients of the first two terms

in that Taylor series are proportional to d = |d|. Define the polynomials

Mk(ρ) = Mk,0 +Mk,1ρ+Mk,2ρ
2 (4.137)

for k = 0, 1, . . . 8, and

B̃k(ρ) = B̃k,0 + B̃k,1ρ+ B̃k,2ρ
2 (4.138)

for k = 1, . . . 6.

Using the expansions (4.136) and (4.135), the terms in the numerator of (4.134c) can be ex-

panded as follows

B1(R · e3)(ẽ ·R)(R · φ)(n̂ ·R) =
5∑

k=0

H0,kρ
k +O(ρ3), (4.139)

where the coefficients H0,k are evaluated from the product of the polynomials B̃1, M0, M1, M2 and

M3. In the above expansion, the coefficients upto, but not including, order five are proportional

to some polynomial in d of degree less than 5 with no constant term. Henceforth, such coefficients

will be said to be proportional to d, as a shorthand for the above idea. The fifth order term is not

proportional to d because of the term ρ5B1,0M0,2M1,1M2,1M3,1 obtained in the multiplication of the

polynomials. The above expansion is truncated such that this term can be retained. If this term is

subtracted from (4.139), all terms of order less than or equal to five in the resultant difference will

be proportional to d. We will see why this is useful later. We now have

F̃1(ρ, θ) =
µ

πR7

[
5∑

k=0

H0,kρ
k+1 +O(ρ4)

]
J̃ (η). (4.140)

If we define Ra :=
√
d2 + ρ2d ·C + ρ2 [C2 + 2d ·D], then

R = |R| =
[(

d + ρC + ρ2D +O(ρ3)
)
·
(
d + ρC + ρ2D +O(ρ3)

)]1/2
(4.141a)

=
[
d2 + ρ2d ·C + ρ2

[
C2 + 2d ·D

]
+O(ρ3)

]1/2
(4.141b)

= Ra

[
1 +

Re
R2
a

]1/2

for some Re such that Re = O(ρ3) (4.141c)
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= Ra

[
1 +O

(
Re
R2
a

)]
as

Re
R2
a

goes to 0 (4.141d)

= Ra +O

(
ρ3

Ra

)
as ρ goes to 0. (4.141e)

We will assume that R − Ra goes to zero at least as fast as ρ3/Ra in most of the domain of

integration. Similarly,

1

Rn
≈ 1

Rna

[
1− n

2
O

(
ρ3

R2
a

)]
. (4.142)

Therefore,

F̃1(ρ, θ) =
µ

πR7
a

[
1−O

(
ρ3

R2
a

)][ 5∑
k=0

H0,kρ
k+1 +O(ρ4)

]
J̃ (η) (4.143)

=
µ

πR7
a

[
5∑

k=0

H0,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (4.144)

where G(ρ, θ) is either O(ρ4) or O(ρ4/R2
a). We consider the worst case, which is O(ρ4/R2

a). Consider

decomposition of the integral over F̃1(ρ, θ) as follows∫
Γ
F̃1(ρ, θ)dρdθ =

∫
Γ
F̃S1 (ρ, θ)dρdθ +

∫
Γ
F̃R1 (ρ, θ)dρdθ, (4.145)

where

F̃S1 (ρ, θ) = F̃1(ρ, θ)− µ

πR7
a

[
5∑

k=0

H0,kρ
k+1

]
J̃ (η). (4.146)

The ρ-integral over F̃R1 (ρ, θ) can be evaluated analytically, as shown in Appendix C.2.5, and that

over F̃S1 (ρ, θ) can be evaluated using Gaussian quadrature since F̃S1 (ρ, θ) is relatively smooth, as

explained below. The integral over θ is computed simultaneously for F̃S1 (ρ, θ) and F̃R1 (ρ, θ) using

Gaussian quadrature. The sigmoidal transformation mentioned on Page 134 is still applied.

When d is relatively small, Ra varies as ρ in the worst case. Therefore, some terms in F̃S1 (ρ, θ)

vary as 1/ρ3. However, this is not a problem because such the terms go to zero as d goes to zero.

As noted before, the lowest order term in the numerator of F̃1(ρ, θ) that is not proportional to d

varies as ρ6. Since this term is subtracted in (4.146), all terms in F̃S1 (ρ, θ) whose coefficient is not

proportional to d vary at least as slowly as ρ7/R7
a, which is on the order of a constant. When d is
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much larger than
√

(2d ·D)/ρ+ C2ρ in the domain of integration, which is not generally the case,

Ra varies as
√
ρ. Therefore, F̃S1 (ρ, θ) is on the same order as 1/

√
ρ in the domain of integration

and non-smoothness of the integrand is significantly reduced. Note that to guarantee smoothness

of F̃S1 (ρ, θ) under all cases, one would have to retain terms of order ρ3 in the expansions (4.136)

and then subtract some of the additional terms resulting from them from the integrand. However,

constructing these expansions is computationally intensive. Therefore, it can be ignored since the

condition that d be large enough as mentioned above is rarely satisfied.

Second term. The foregoing approach can be applied for integrating other terms in Equation

(4.133). Consider the second term in Equation (4.133),

F̃2(ρ, θ) =
µ

πR3
B2(R̂ · n̂′)(R̂ · n̂)(ẽ · φ) Jρ (4.147a)

=
µ

πR5
B2(R · e3)(R · n̂)(ẽ · φ) J̃ (η)ρ. (4.147b)

Then, from the expansions (4.136) and (4.135), we have

B2(R · e3)(R · n̂)(ẽ · φ) =
3∑

k=0

H1,kρ
k +O(ρ2), (4.148)

where the coefficients H1,k are obtained by multiplication of the polynomials B̃2, M0, M3 and M4,

without considering the coefficient B̃2,2 (for reasons mentioned at the end of this section). The

coefficients of terms of order less than 3 are proportional to d.

F̃2(ρ, θ) =
µ

πR5

[
3∑

k=0

H1,kρ
k+1 +O(ρ3)

]
J̃ (η) (4.149)

=
µ

πR5
a

[
1−O

(
ρ3

R2
a

)][ 3∑
k=0

H1,kρ
k+1 +O(ρ3)

]
J̃ (η) (4.150)

=
µ

πR5
a

[
3∑

k=0

H1,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (4.151)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The term obtained from singularity subtraction is

F̃S2 (ρ, θ) = F̃2(ρ, θ)− µ

πR5
a

[
3∑

k=0

H1,kρ
k+1

]
J̃ (η). (4.152)
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When d is small, F̃S2 (ρ, θ) varies at least as slowly as ρ5/R5
a, which in turn varies as a constant,

and thus, F̃S2 (ρ, θ) is smooth. This is because the only terms in F̃S2 (ρ, θ) that vary faster include

those that are proportional to d, which is small by assumption. Note that the above argument

works because the expansion in (4.148) is truncated such that it can generate all terms up to

(and including) order three that are not proportional to d. It is not required to retain terms of

order three in the expansions in (4.136) for this. When d is not small, which is rarely the case,

F̃S2 (ρ, θ) varies as G(ρ, θ)/R5
a in the domain of integration, which in turn varies as ρ3/ρ2.5 =

√
ρ.

Hence, F̃S2 (ρ, θ) is always smooth and can be integrated numerically. The same idea is applied for

singularity subtraction of other terms and kernels. Details are mentioned in Appendix C.2.

One may notice that the above argument for smoothness of the subtracted integrand works even

if terms of order two are not retained for some of the expansions in (4.136) and (4.135). This is

indeed true. However, retaining these additional terms provides better accuracy in the quadrature.

In the computer code developed based on this work, only the second order terms in (4.135b) for

j = 2 to 6 are dropped when the H(x,x′) kernel is required in the simulation. For problems where

this kernel is not needed, such as for scattering from rigid objects, only terms up to and including

order one in (4.136) are used. Finally, we also apply the following transformation from ρ to t to

compute the ρ-integral, which helps in further cancelling the near-singularity

t = ln

(
ρ+

b

2c
+
Ra√
c

)
, (4.153)

where b and c are the coefficients obtained by writing Ra as Ra =
√
a+ bρ+ cρ2.

4.4 Incident Field Calculation

When the incident field is a plane wave with unit displacement amplitude, the incident dis-

placement is given by

uI(x) = d eik·x, (4.154)
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where d is a unit vector denoting the polarization of the wave and k is the wavevector. The

corresponding traction field on the surface of the scatterer is given by

tI(x) = τ I · n̂ = λ∇ · uI n̂ + µ(∇uI + uI∇) · n̂ (4.155a)

= iλ(k · uI)n̂ + iµ
[
k(uI · n̂) + uI(k · n̂)

]
, (4.155b)

where n̂ is the outward oriented unit normal vector on the surface of the scatterer, and all quantities

except the Lamé constants, k and d are, in general, functions of x.

4.5 Semi-Analytical Solution for Scattering from a Circular Crack

For the purpose of validating the BEM, we will show several numerical results in Section 4.6. One

of the validation examples is the circular crack scattering problem. This section details the process

of computing a reference semi-analytical solution for this problem for the purpose of comparison.

Consider a circular crack (open surface of zero thickness) of unit radius in an otherwise homogeneous

elastic solid. The crack is assumed to be traction-free. Let the crack lie on the xy-plane. Assume

that a plane wave with displacement field

uI(x) = ik1Ã0e
ik1zẑ (4.156)

is impinged on the crack, where k1 is the longitudinal wavenumber in the host medium and Ã0 is

a constant. Let σ = k1/k2 and B = −ik3
1, with k2 representing the shear wavenumber, and assume

a spherical coordinate system centered at the crack.

Mal showed that the scattered displacement field in the far-field can be expressed as [169]

ur(r, θ) = B
eik1r

k1r

(
sin2 θ − 1

2σ2

)
P (k1 sin θ)

sin θ
, (sin θ 6= 0) (4.157a)

uθ(r, θ) =
B

σ3

eik2r

k2r
cos θP (k2 sin θ), (4.157b)

where

P (k) =
2Ã0

π(1− σ2)

1∫
0

p(ξ) sin(kξ)dξ, (4.158)
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and p(ξ) is a continuous function with bounded first derivative in [0, 1] that satisfies the integral

equation (4.159).

p(ξ) +

1∫
0

F (ξ, η)p(η)dη = ξ (4.159)

for ξ ∈ [0, 1], where

F (ξ, η) =
−2ik2σ

3

π(1− σ2)

1∫
0

[(
k2 − 1/(2σ2)

)2
k
√

1− k2

(
eikk1|ξ−η| − eikk1(ξ+η)

)
+

k
√

1− k2

σ3

(
eikk2|ξ−η| − eikk2(ξ+η)

)]
dk. (4.160)

When sin θ is zero, ur can be calculated from the limiting form of (4.157a):

ur(r, θ) = −B eik1r

2k1rσ2

[
lim

sin θ→0

P (k1 sin θ)

sin θ

]
, (4.161)

lim
sin θ→0

P (k1 sin θ)

sin θ
=

2Ã0k1

π(1− σ2)

1∫
0

p(ξ)ξdξ. (4.162)

The scattering amplitudes for scattered longitudinal and shear waves can be extracted by setting

Ã0 = −i/k1:

Ap(θ) = re−ik1rur(r, θ), (4.163a)

As(θ) = re−ik2ruθ(r, θ), (4.163b)

where Ap and As are the scattering amplitudes for longitudinal and shear waves, respectively. To

compute the scattering amplitudes, the integral equation in (4.159) has to be solved. We use the

Nyström method for this. For m = 1, 2 . . . Nq, let ξm and wm be the points and weights of a

quadrature rule in the interval [0, 1]. Then, for m = 1 to Nq, we have

p(ξm) +

1∫
0

F (ξm, η)p(η)dη = ξm. (4.164)

In the Nyström method, the integral in the above equation is discretized using the foregoing quadra-

ture rule to obtain a linear system of equations for determining the values of p(ξ) at the quadrature
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Figure 4.7: Real part of F (ξm, η) as a function of η (ξm = 0.4). Derivative is discontinuous at

η = ξm.

points. The choice of the quadrature rule affects the rate at which the solution (for the scattering

amplitude) converges as a function of Nq because the first derivative of the real part of F (ξm, η) is

discontinuous at η = ξm, as shown in Figure 4.7. Because of this discontinuity, the trapezoidal rule

performs better than the Gauss-Legendre rule (for the same number of quadrature points) even

though the latter has a lower error in computing the integral in (4.158).

Discretizing the integral in (4.164) using the preferred quadrature rule, we get

p(ξm) +

Nq∑
n=1

wnF (ξm, ξn)p(ξn) = ξm, (4.165)

which leads to a linear system of equations for determining p(ξm) for m = 1 to Nq. After solving

this system, P (k) in (4.158) can be computed as follows

P (k) =
2Ã0

π(1− σ2)

Nq∑
m=1

wmp(ξm) sin(kξm). (4.166)
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Table 4.2: Convergence of semi-analytical solution for Σp/π with increasing Nq (k2 = 6, ν = 0.25).

No. of quadrature points (Nq) Normalized scattering cross section (Σp/π) Relative Error

10 1.8570398127 0.011

20 1.8734260844 0.0022

50 1.8769418518 0.00032

100 1.8773975290 7.8e-05

200 1.8775082919 1.9e-05

500 1.8775388932 3.1e-06

1000 1.8775432353 7.7e-07

2000 1.8775443182 1.9e-07

3000 1.8775445186 8.3e-08

4000 1.8775445886 4.6e-08

5000 1.8775446211 2.9e-08

6000 1.8775446387 1.9e-08

7000 1.8775446493 1.4e-08

8000 1.8775446562 1.0e-08

9000 1.8775446609 7.6e-09

10000 1.8775446643 5.8e-09

For estimating the number of quadrature points required to achieve less than 0.0001% of error in

the scattering amplitudes, the scattering cross section of the P-wave [170, 171], defined in (4.167),

is computed for several values of Nq and listed in Table 4.2.

Σp =
4π

k1
={Ap(θi)} , (4.167)

where ={ } represents the imaginary part and θi represents the propagation direction of the incident

wave, which equals zero in this case. Solutions in the table correspond to the case with Poisson’s

ratio ν = 0.25 (i.e., σ = 1/
√

3) and k2 = 6, and are computed using the trapezoidal rule. The

relative error is calculated by taking the solution for Nq = 20, 000 as reference. For k2 > 6, more

quadrature points are required to achieve the same relative errors. The foregoing analysis indicates

that the solution for Nq = 10, 000 can be reasonably assumed to achieve an accuracy of at least

0.0001%, even for slightly higher values of k2.
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4.6 Numerical Results

In this section, simulation results for a spherical cavity and some penny-shaped cracks are

compared with the respective reference solutions to validate the BEM model. Convergence results

(h-refinement) for different discretization rules are also shown.

4.6.1 Convergence Rates

4.6.1.1 Spherical Cavity Problem

Consider scattering of a longitudinal plane wave from a spherical cavity of radius a in an

unbounded elastic solid. The material properties of the host medium and the properties of the

incident wave are same as those in Section 3.3. The frequency is such that kpa = π. This problem

is simulated using the CFIE formulation with coupling parameter β = −(1 + i). The scattering

amplitudes of longitudinal and shear waves are calculated at 181 uniformly spaced values of θ in

[0, π]. The relative error in scattering amplitude is defined in the same way as in Section 3.3.

Figure 4.8 shows the relative errors in scattered longitudinal wave for different discretization rules

as a function of the average number of interpolation nodes per shear wavelength. Recall that Rule-

xy represents the case wherein mesh interpolation is of order x and the degree of polynomials used

in field interpolation is y.

The results for Rule-10 and Rule-11 are obtained by starting with 80 first-order triangular

elements and dividing each triangle into four sub-triangles at each refinement step. For Rule-22

and Rule-23, the starting point is 20 second-order triangles. We find that the convergence rate

increases with an increase in the discretization order. For Rule-23, the errors are on the same level

as that of Rule-22 because of the effect of geometry error, as explained in Section 3.3. The relative

errors for scattered shear wave are shown in Figure 4.9. We observe higher errors than in the case of

the longitudinal wave. This is because shear wavelength is smaller than the longitudinal wavelength,

and hence for the same mesh, the error in approximating shear waves is higher. Another difference

between longitudinal and shear waves is that Rule-33 converges faster than Rule-22 in the latter
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Figure 4.8: Relative error in scattering amplitude of longitudinal wave for a spherical cavity (kpa =

π) as a function of the average number of interpolation nodes per shear wavelength. Simulation

results are based on the CFIE formulation with coupling parameter β = −(1 + i).
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Figure 4.9: Relative error in scattering amplitude of shear wave for a spherical cavity (kpa = π) as

a function of the average number of interpolation nodes per shear wavelength. Simulation results

are based on the CFIE formulation with coupling parameter β = −(1 + i).
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case. This is possible because compared to geometry error, error from field approximation may

have a higher influence on the total error in case of the shear wave.

4.6.1.2 Circular Crack Problem

Consider a circular traction-free crack of radius a in a material with Poisson’s ratio ν = 0.25,

as described in Section 4.5. A longitudinal plane wave travelling in the positive z-direction is

incident on the crack. The frequency is such that ksa = 4π. This problem is solved using the

HBIE formulation, and scattering amplitudes of the longitudinal and shear waves are calculated

at 181 uniformly spaced values of θ in [0, π]. The reference solution is computed as described in

Section 4.5. Figure 4.10 shows the convergence results for the longitudinal wave. Results of Rule-

10 and Rule-11 are obtained by starting with 80 first-order elements and performing h-refinement.

The starting point of other rules is 20 second-order elements. Unlike the spherical cavity problem,

Rule-23 has lower error and converges faster than Rule-22. However, geometry error begins to

dominate with further h-refinement, as previously noted in the spherical cavity problem.

Although Rule-11 has lower error than Rule-10 for the same mesh representation, the latter

seems to converge faster than Rule-11. This seems to be an anomaly specific to some frequencies

since the opposite behaviour is observed at some other frequencies. Rule-24 is based on a 15-point

symmetric quadrature rule with order (degree of exactness) seven. The points and weights of this

quadrature rule for a standard reference triangle Ω = {(ξ1, ξ2) 3 ξ1, ξ2 ∈ [0, 1] and ξ1 + ξ2 ≤ 1}

are given in Table 4.3. The results for shear wave are shown in Figure 4.11. As in the case of the

spherical cavity, the errors for shear wave are higher than those of the longitudinal wave. Rule-24

shows lower errors and higher convergence rate than Rule-23, except for the last point.

4.6.2 Scattering Cross Section for a Circular Crack

We now compare simulation results for the scattering cross section with the reference solution

over a range of frequencies. All parameters except the frequency remain unchanged from Sec-

tion 4.6.1.2. Figure 4.12 shows the scattering cross section as a function of the shear wavenumber
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Figure 4.10: Relative error in scattering amplitude of longitudinal wave for a circular crack (ν =

0.25, ksa = 4π) as a function of the average number of interpolation nodes per shear wavelength.

Simulation results are are based on the HBIE formulation.
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Figure 4.11: Relative error in scattering amplitude of shear wave for a circular crack (ν = 0.25,

ksa = 4π) as a function of the average number of interpolation nodes per shear wavelength. Simu-

lation results are are based on the HBIE formulation.
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Table 4.3: Symmetric quadrature rule used in Rule-24.

Weight ξ1 ξ2

0.02229067600526 0.43530466960355 0.43530466960355

0.12046117216372 0.23927997518879 0.23927997518879

0.05237092590776 0.06453787138293 0.06453787138293

0.06910527962829 0.31072360003490 0.64514575889900

from ksa = 0 to ksa = 8. The reference solution for ksa ≥ 2 is calculated using the semi-analytical

solution with 10,000 quadrature points. For ksa < 2, the number of quadrature points is scaled

down by the factor 8/(ksa) to reduce the computational cost. Assuming that the function p(ξ)

in Equation (4.159) oscillates at the frequency of the shear wave, this scaling factor ensures that

the discretization “density” is same as that at ksa = 8. Hence, the accuracy of reference solution

is unaffected by decreasing the number of quadrature points. The BEM results are obtained by

solving the HBIE formulation with Rule-22 and 80 second-order triangles. There is good agreement

between the simulated and reference solutions. The Kirchhoff approximation (KA) solution is also

shown for reference. Both reference and BEM solutions converge to the KA result asymptotically.

Figure 4.13 shows that the relative error in the scattering cross section is less than 5% at almost all

frequencies. The error does not show an increasing trend with the frequency since it is calculated

using the scattering cross section in a single direction. Indeed, when the error is defined by taking

all angles into consideration, we will observe an increasing trend with frequency, as implied by the

results in Section 4.6.1.2.

4.7 Summary

In this chapter, we presented a high-order BEM for solving the CFIE formulation for elastic

wave scattering. The development of such methods is especially challenging because of the presence

of highly singular kernels. Special quadrature schemes are required to integrate singular and nearly-

singular integrals in the BEM matrix, which has a significant impact on the matrix filling time.

While some methods to convert hypersingular kernels to weakly-singular ones are available in the
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Figure 4.12: Normalized scattering cross section of a circular crack as a function of the shear

wavelength. BEM results are generated using 80 second-order triangles with Rule-22 discretization.

KA refers to the Kirchhoff approximation. Martin’s results are from [170].
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literature, they may be less efficient since they can be viewed as “global” regularization methods

wherein any additional calculations introduced in the formulation apply even to far-field matrix

elements. Here, we use “local” regularization methods based on singularity subtraction.

The use of high-order discretization and the coincidence of field interpolation and quadrature

points are other key features of this method. Because of highly singular kernels, it seems more

beneficial to use high-order geometry discretizations as they lead to larger mesh elements; the use of

small mesh elements (for resolving geometries accurately) drastically increases the number of matrix

elements which need to be treated as nearly-singular integrals, thus affecting the computational

performance. Moreover, numerical results for scattering from spherical cavities and traction-free

cracks show the benefits of using even second-order geometry representations (in conjunction with

high-order field interpolation) in terms of convergence rates. In the case of the CFIE and HBIE,

field interpolation with polynomials of degree more than two may not be particularly useful unless

when the geometry representation is accurate. Scattering from rectangular crack-like objects, for

example, is a problem where high-order field discretizations are independently useful.
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CHAPTER 5. MULTILEVEL FAST MULTIPOLE METHOD FOR

COMBINED FIELD FORMULATION

The first two sections of this chapter serve as an introduction to fast algorithms and the fast-

multipole method (FMM). The following two sections derive diagonal-form multipole expansions

of the CFIE kernels and the resulting factorizations of far-field elements in the influence matrix.

Section 5.5 details a multilevel implementation of the FMM for calculating matrix-vector products.

The last section contains numerical results for computational time and memory complexity as well

as some validation examples.

5.1 Introduction

In BEM, the degrees of freedom (DOFs) are determined by solving a linear system of equations

defined by the BEM influence matrix. Solutions can be obtained either by inversion of the influence

matrix (direct methods) or by iterative methods that start with a trial solution and iteratively

converge to the true solution. Since the influence matrix is dense, standard methods such as the

LU decomposition need to be applied in the former case. For a matrix of size N ×N , this requires

O(N3) computational time and O(N2) storage memory. On the other hand, standard iterative

methods such as the Krylov-subspace techniques typically require O(N2) computational time per

iteration as matrix-vector multiplications form the bottleneck. If the matrix is well-conditioned,

solutions can be obtained to a good accuracy within a few iterations. Hence, iterative methods

are preferred when the matrix dimension N is large. However, their storage memory requirement

is still O(N2) since the whole influence matrix needs to be stored. For very large values of N ,

the number of computations required for both computing the elements of the influence matrix and

solving the linear system is practically prohibitive.



www.manaraa.com

154

Fast BEM algorithms require the computation of near-field matrix elements only. They exploit

the properties of the influence matrix to represent the far-field elements in a way that enables

fast solution of linear systems approximately. Fast direct methods, for example, store a small

number of precomputed values that enable fast computation of the product of the inverse matrix

with a vector. Likewise, fast iterative methods enable fast computation of the product of the

influence matrix with a vector. The fast multipole method is a fast iterative method that is based

on analytical factorization of the BEM kernels wherein the factors that depend on the “source”

location are independent of the “observation” location, and vice-versa.

Related work. In the last two decades, several fast boundary integral equation methods

(BIEMs) have been investigated for 3D elastodynamics. Fujiwara [172] published the first imple-

mentation of the high-frequency (diagonal-form) FMM to 3D elastodynamics problems in the year

2000. In the same year, Yoshida et al. [173, 174] applied the low-frequency FMM to the traction

BIE formulation for modeling crack scattering problems. Subsequently, they developed a diagonal-

form FMM for the same problem [175]. The traction BIE considered in these works is derived from

a “global” regularization of the hypersingular BIE in Equation (4.75). Chaillat, Sanz and others

[111, 166, 176] published several extensive studies and applications of the high-frequency FMM for

3D elastodynamics starting from the year 2008. Around the same time, Tong and Chew [31] devel-

oped a similar technique for the Nyström method. Yan et al. [177] developed a kernel-independent

method based on the precorrected-FFT technique [178]. Isakari [179] developed a low-frequency

FMM for 3D periodic problems based on a combined-field formulation (Burton-Miller BIE). Fanbin

et al. [112] proposed an FFT method for accelerating a high-order BIEM. This method is based on

an unconventional choice of the BIE formulation which, even if free from fictitious eigenfrequencies

for transmission problems, is not extensible to Dirichlet and Neumann scattering problems. Liu

et al. [145] applied the FMM to an indirect (displacement) BIE formulation for multi-domain

problems. Chaillat, Desidario and Ciarlet [180, 181] studied H−matrix based iterative and direct

solvers for high-frequency elastodynamics problems.
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All the above mentioned works solve the conventional (displacement) BIE except when men-

tioned otherwise. The combined-field formulation is better than the conventional (displacement)

and hypersingular (traction) BIEs for modeling scattering problems since it is free from fictitious

eigenfrequencies. However, applying it at relatively high frequencies is problematic since it be-

comes progressively less regular with an increase in the frequency. Therefore, at high frequencies,

fast iterative BIEMs based on the combined-field formulation require a relatively large number of

iterations to obtain a solution within a given level of residual error. Recently, some preconditioned

combined-field formulations have been proposed for both Dirichlet and Neumann scattering prob-

lems to address this difficulty [182–184]. In case of the Dirchlet scattering problem, a fast-multipole

BEM has also been applied to such a preconditioned formulation [113].

In this chapter, we develop a multilevel implementation of the diagonal-form FMM for the (di-

rect) CFIE formulation where the hypersingular kernel is evaluated using “local” regularization.

To our knowledge, this is the first implementation of the diagonal-form FMM for the CFIE for-

mulation wherein the hypersingular kernels not evaluated by means of global regularization. Local

regularization leads to a simplification in far-field evaluations since the kernels of the CBIE and

HBIE formulations share their radiation patterns, as shown in Section 5.4.

5.2 Principle of the Fast Multipole Method

For illustrating the principle of the FMM, consider the following matrix-vector product, assum-

ing xi, x
′
j ∈ R2, uj ∈ R and g : R2 × R2 → R:

Ii =

N∑
j=1

g(xi, x
′
j)uj (5.1)

for i = 1, 2, . . . N , where g(xi, x
′
j) form the elements of a matrix and uj form the elements of a vector.

The points x′i and xi will be called source and observation points, respectively. Direct evaluation

of this product requires N2 computations of the function g and O(N2) elementary computations.

If there exists a factorization of g as in Equation (5.2), then only O(N) elementary computations

and 2N evaluations of the functions k and l are required since the product can be evaluated as
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shown in (5.3). Further, only 2N quantities are sufficient to represent the whole matrix insofar as

computing its products with vectors is concerned.

g(x, x′) = k(x)l(x′), (5.2)

Ii = k(xi)

N∑
j=1

l(x′j)uj . (5.3)

Equation (5.2) represents a factorization of g that is separable in the variables x and x′. Factor-

izations of this form are quite elementary and rarely exist for the elements of influence matrices in

BEMs. A more complex representation includes a truncated series expansion of g wherein each term

of the series admits a separable factorization. Such expansions are known as degenerate expansions,

and are illustrated in (5.4).

g(x, x′) =
P∑
p=1

Tpkp(x)lp(x
′) = k̄T (x) · T · l̄(x′), (5.4)

where the column vectors k̄(x), l̄(x′) ∈ RP are formed by kp(x) and lp(x
′), respectively, for p =

1, 2, . . . P . Similarly, the diagonal matrix T is formed by Tp. In this case, the matrix-vector product

can be evaluated as shown below:

Ii =
P∑
p=1

Tpkp(xi)
N∑
j=1

lp(x
′
j)uj (5.5)

for i = 1, 2, . . . N . This requires 2NP + P function evaluations, assuming that the coefficients Tp

are also functions. The number of quantities that need to be stored for computing products of

the matrix with vectors is also 2NP + P . If P is small compared to N , the computational cost

involved in the above factorization compares favorably with direct computation according to (5.1).

Equation (5.4) can be viewed as a diagonal-form factorization as it readily yields the following

generalization:

g(x, x′) =

P∑
p=1

kp(x)

Q∑
q=1

Tpqlq(x
′) = k̄T (x) · T · l̄(x′), (5.6)

where the matrix T is now dense and non-square. The matrix-vector product then simplifies to

Ii =

P∑
p=1

kp(xi)

Q∑
q=1

Tpq

N∑
j=1

lq(x
′
j)uj (5.7)
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Figure 5.1: A representation of M groups of source and observation points.

for i = 1, 2, . . . N . Assuming that P = Q, this requires 2NP function evaluations resulting from

k̄(x) and l̄(x′), and P 2 evaluations resulting from T . In other words, the number of quantities

required for representing the matrix is 2NP + P 2. The number of elementary operations required

is O(NP ) or O(P 2), depending on whichever is higher.

An important difference between the diagonal and non-diagonal factorizations is revealed when

the foregoing concepts are extended to M groups of source and observation points. For this, consider

Figure 5.1 and the following matrix-vector product

Ii =
MN∑
j=1

g(xi, x
′
j)uj (5.8)

for i = 1, 2 . . .MN . First, assume that each pair of source and observation groups satisfies an

expansion of the form (5.4) such that all expansions involving a given source group share the same
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Figure 5.2: An illustration of source and observation points in Equation (5.10). The source point

is x′, observation point is x, and multipole and local expansion centers are x′0 and x0, respectively.

vector l̄(x′). Similarly, assume that all expansions involving a given observation group share the

same vector k̄(x). To elaborate, associate M vectors represented by l̄α(x′) for α = 1, 2 . . .M with

the M source groups and another M vectors represented by k̄β(x) for β = 1, 2 . . .M with the M

observation groups. If the points x′ and x belong to the source and observation groups α0 and β0,

respectively, then the following expansion is assumed to hold:

g(x, x′) = k̄Tβ0(x) · Tα0β0 · l̄α0(x′). (5.9)

Therefore, to compute the matrix-vector product in (5.8) according to these expansions, the number

of function evaluations involved in computing the vectors k̄β(xi) and l̄α(x′i) for i = 1, 2 . . . NM is

O(NMP ). The number of function evaluations required for computing the diagonal matrices Tαβ

is O(M2P ). If Tαβ was not diagonal, which is the case for non-diagonal expansions of the form

given by (5.6), then the function evaluations required is O(M2P 2). Therefore, if P ∼ N , the total

number of function evaluations required for non-diagonal expansions is O((NM)2), which is on

the same order as that required for direct computation of the matrix-vector product. Therefore,

non-diagonal factorizations are useful only when the number of terms in the expansion (P ) is much

less than number of points in each group (N).

In the FMM, expansions of the above type are derived for far-field blocks of the influence

matrix using multipole expansions of the BEM kernels. Non-diagonal expansions are used at low

frequencies (static and quasi-static regimes), whereas diagonal-form expansions are used at high
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frequencies. This is because the number of terms required in non-diagonal expansions is relatively

small only at low frequencies, and the known diagonal-form expansions fail at low frequencies [185,

Chap. 5]. The multipole expansions derive their name from the observation that they approximate

radiation from a point source by that from a number of multipole sources that are located away

from it. This can be seen with the help of Figure 5.2. Using the notation of the earlier example,

a kernel function g(x,x′) which represents the radiation at an observation point x due to a point

source located at x′ is factorized in the form of (5.6) such that the vectors l̄ and k̄ depend on

x′0 − x′ and x− x0, respectively, and the matrix T depends on x0 − x′0. Furthermore, g(x,x) can

be written as

g(x,x′) =

∞∑
p=1

kp(x− x0)

∞∑
q=1

Tpq(x0 − x′0)lq(x
′
0 − x′) (5.10a)

=

∞∑
q=1

γq(x,x
′
0)lq(x

′
0 − x′) = γ̄T (x,x′0) · l̄(x′0 − x′) (5.10b)

=
∞∑
p=1

kp(x− x0)Γp(x0,x
′) = k̄T (x− x0) · Γ(x0,x

′), (5.10c)

where γq(x,x
′
0) and Γp(x0, x

′) are defined by contraction of the appropriate summations. Each

element of γ̄(x,x′0) can be expressed in the form of the radiation field due to a multipole centered at

x′0 and evaluated at x. Therefore, Equation (5.10b) is called multipole expansion, and the elements

of l̄(x′0 − x′) are called multipole moments. By symmetry, Equation (5.10c) can also be viewed

as a multipole expansion. However, it is more common to view the elements of k̄(x − x0) as the

expansion (basis) functions and those of Γ(x0,x
′) as the coefficients, and hence (5.10c) is called

local expansion. The coefficients Tpq(x0 − x′0) are called transfer functions.

5.3 Multipole Expansions of CFIE Kernels

Multipole expansions of the kernels in the CFIE formulation are given in this section. The CFIE

includes kernels from both the CBIE and the HBIE. Diagonal-form expansions of CBIE kernels are
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well-known [30]. Similar expansions of HBIE kernels are derived here. Consider the Helmholtz

equation corresponding to the wavenumber k

(∇2 + k2)φ(x) = 0. (5.11)

The fundamental solution (i.e., Green’s function with regularity condition imposed at infinity) of

the Helmholtz equation is

g(x,x′) =
eikR

4πR
, (5.12)

where R = |x − x′| and x′ is the location of the Dirac-delta source. A diagonal-form multipole

expansion is available for this Green’s function. Multipole expansions of the HBIE kernels can

be derived by expressing them in terms of the Helmholtz Green’s functions corresponding to the

longitudinal (kc) and shear wavenumbers (ks). The subscripts s and c, standing for shear and

compressional (longitudinal) wavenumbers, respectively, are used to distinguish between the two

Green’s functions when necessary. Assuming that there exist vectors d,D ∈ R3 such that |d| < |D|

and |x− x′| = |d + D|, the Helmholtz Green’s function can be decomposed as follows [185, p. 80]

[186, p. 16]

g(x,x′) =
ik

(4π)2

∞∑
l=0

il(2l + 1)h
(1)
l (kD) jl(kd) Pl(d̂ · D̂), (5.13)

where d = |d|, D = |D|, d̂ and D̂ are the unit vectors along d and D, respectively, Pl(x) is the

Legendre polynomial of order l, and hl(x) and jl(x) are the spherical Hankel and Bessel functions

of the first kind of order l, respectively. The above equation is known as Gegenbauer’s addition

theorem. If we choose d = x′0 − x′ and D = x − x′0, then this theorem represents a multipole

expansion about the point x′0 for a point source located at x′. However, a different choice of d and

D is used to derive a diagonal-form expansion, as mentioned later.

The following identity, which is an instance of the Funk-Hecke theorem, is applied to rewrite

the above expression [186, p. 16] [187, p. 7]:

4πiljl(λ)Pl(d̂ · ŝ) =

∫
S2
dσ(k̂) eiλk̂·d̂Pl(k̂ · ŝ), (5.14)
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for all ŝ, d̂ ∈ S2, l ∈ N, and λ ∈ C, where S2 ⊂ R3 is the 2-sphere and dσ is the area element on S2.

Note that the points in S2 are considered to be dimensionless and hence all unit vectors naturally

lie in this space. Choosing ŝ = D̂ and λ = kd, we get

4πiljl(kd)Pl(d̂ · D̂) =

∫
S2
d2k̂ eik·dPl(k̂ · D̂), (5.15)

where k = kk̂ and the area element is represented by d2k̂. Substituting the above equation into

(5.13) yields

g(x,x′) =
ik

(4π)2

∞∑
l=0

il(2l + 1)h
(1)
l (kD)

∫
S2
d2k̂ eik·dPl(k̂ · D̂) (5.16a)

≈ ik

(4π)2

∫
S2
d2k̂ eik·d

LT∑
l=0

il(2l + 1)h
(1)
l (kD)Pl(k̂ · D̂), (5.16b)

where the integral is interchanged with the summation after truncating the sum at LT + 1 terms.

With reference to Figure 5.2, choose x0, x′0 ∈ R3 such that |x0 − x′0| > |x − x0 + x′0 − x′|. Let

r0 = x0 − x′0. We have

x− x′ = x− x0 + r0 + x′0 − x′. (5.17)

Substituting d = x− x0 + x′0 − x′ and D = r0 in (5.16b) gives

g(x,x′) ≈ ik

(4π)2

∫
S2
d2k̂ eik·(x−x0)L(k, r0)e−ik·(x

′−x′0), (5.18)

where

L(k, r0) =
ik

(4π)2

LT∑
l=0

il(2l + 1)h
(1)
l (kr0)Pl(k̂ · r̂0), (5.19)

r0 = |r0| and r̂ = r/r0. More concisely, we can write

g(x,x′) ≈
∫
S2
d2k̂ G(k), (5.20)

with G(k) is given by

G(k) =M(k,x− x0) L(k, r0) M(k,x′0 − x′), (5.21)
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Figure 5.3: A representation of a closed surface S with a single-layer source h(x). The point x

represents the location where the radiated field is evaluated.

and M(k,x − y) = eik·(x−y) for x,y ∈ R3. For brevity, the dependence of G(k) on x, x′, and

r0 is not shown explicitly. Discretizing the integral in (5.20) using a quadrature rule yields a

diagonal-form expansion of the type given by (5.4):

g(x,x′) ≈
Q∑
q=1

wqM(k(q),x− x0) L(k(q), r0) M(k(q),x′0 − x′), (5.22)

where Q is the number of quadrature points, wq and k(q) are the quadrature weights and points

(scaled by k), respectively.

Notice that the termM(k(q),x′0−x′) expresses the phase shift from x′ to x′0 due to a plane-wave

with wavevector k(q). It lends a physical meaning to some components in the matrix-vector product,

as shown below. First, consider the evaluation of a matrix-vector product as in Equation (5.1) by

replacing g(xj , x
′
i) with the 3D Helmholtz Green’s function g(xi,x

′
j). This product can be evaluated

using the factorization (5.22) as

Ij =

Q∑
q=1

wqM(k(q),xj − x0) L(k(q), r0)

(
N∑
k=1

M(k(q),x′0 − x′k)uk

)
. (5.23)

The term in the parentheses can be interpreted as the radiation field in the direction k̂
(q)

due

to single-layer sources located at x′k for k = 1, 2, . . . N . The reason for this can be discerned by
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calculating the radiated field at a point x due to single-layer sources h(x′) located on a closed

surface S, as shown in Figure 5.3. The radiated field at x is given by

φ(x) =

∫
S
g(x,x′)h(x′)dS(x′). (5.24)

When x is far from S, the radiated field can be approximated by

φ(x) ≈ eikr

r

∫
S
eikd·̂rh(x′)dS(x′) ≈ eikr

r

N∑
k=1

eik(x′0−x′k)·̂ru(x′k), (5.25)

where r and r̂ are the magnitude and direction of r, and the integral is discretized using N quadra-

ture points. The function u(x′k) is the product of the density function and the quadrature weights.

Therefore, the far-field pattern of the radiated field is given by the integral in (5.25), which is

approximated by a summation. The quantity in the parantheses in Equation (5.23) is in the same

form as the summation in the above equation, and hence, for different values of q, it can be consid-

ered as representing a radiation pattern. Analogously, the termM(k(q),x−x0) leads to a receiving

pattern. In case of collocation-based BEMs, the receiving pattern is that of a (in general, directive)

point source. Finally, by analogy with (5.10b), we shall refer to M(k(q),x′0 − x′) as a multipole-

moment. It should be kept in mind, however, that it does not truly represent a multipole-moment

because of a change of basis from multipole expansions to plane-wave expansions (see [185, §2.2.5]).

The CBIE and HBIE kernels can be expressed as derivatives of the Helmholtz Green’s functions

as follows

U(x,x′) =

(
I +
∇∇
k2
s

1

µ

)
gs(x,x

′)− ∇∇
k2
c

1

γ
gc(x,x

′), (5.26a)

T(1)(x,x′) = [n̂′ ·Σ(1)(x,x′)]T (5.26b)

= λ
(
∇x ·U(x,x′)

)
n̂′ + µ(n̂′ · ∇xUT (x,x′) + [n̂′ · (U(x,x′)∇x)]T ), (5.26c)

K(2)(x,x′) = −n̂ ·Σ(1)(x,x′) = −λn̂∇x ·U(x,x′)− µn̂ · (∇xU(x,x′) + U(x,x′)∇x), (5.26d)

H(x,x′) = λn̂
(
∇x ·T(1)(x,x′)

)
+ µn̂ · (∇xT(1)(x,x′) + T(1)(x,x′)∇x), (5.26e)
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where γ := λ+ 2µ, ks and kc are the shear and longitudinal wavenumbers, respectively, and gs and

gc are the Helmholtz Green’s functions with wavenumbers ks and kc, respectively. Both gs(x,x
′)

and gc(x,x
′) can be factorized in the form of (5.20), as shown below

gs(x,x
′) ≈

∫
S2
d2k̂ G(ks), (5.27)

gc(x,x
′) ≈

∫
S2
d2k̂ G(kc). (5.28)

Similar factorizations of the HBIE kernels are obtained by substituting the above expressions for

gs(x,x
′) and gc(x,x

′) into Equations (5.26a) through (5.26e) and moving the derivatives inside the

integrals over S2. Assume that the factorizations are in the following form

F(x,x′) ≈
∫
S2
d2k̂

∼
F(kc,ks), (5.29)

where F represents the kernel U, T(1), K(2) or H. Let Gm = G(km) for m = s, c. Noting that

∇xG(k) = ikG(k) and ∇x · (PG(k)) = ik ·PG(k) for any tensor P ∈ R3 ⊗ R3, we have

∼
U =

1

µ

(
I− k̂k̂

)
Gs +

1

γ
k̂k̂Gc. (5.30)

Furthermore,

∇x ·
∼
U =

1

γ
ikcGc, (5.31a)

n̂′ · ∇x
∼
U
T

=
in̂′ · ks
µ

(
I− k̂k̂

)
Gs +

in̂′ · kc
γ

k̂k̂Gc, (5.31b)

[n̂′ · (
∼
U∇x)]T =

i

µ

(
n̂′ − (n̂′ · k̂)k̂

)
ksGs +

i

γ
(n̂′ · k̂)k̂kcGc (5.31c)

=
i

µ
n̂′ ·

(
I− k̂k̂

)
ksGs +

i

γ
(n̂′ · kc)k̂k̂Gc. (5.31d)

Therefore,

∼
T

(1)
=
ikc
γ

k̂
(
λn̂′ + 2µn̂′ · k̂k̂

)
Gc + iks

[
n̂′ · k̂

(
I− k̂k̂

)
+ n̂′ ·

(
I− k̂k̂

)
k̂
]
Gs. (5.32)

Similarly,

∼
K

(2)
= − ikc

γ

(
λn̂ + 2µn̂ · k̂k̂

)
k̂Gc − iks

[
n̂ · k̂

(
I− k̂k̂

)
+ k̂n̂ ·

(
I− k̂k̂

)]
Gs. (5.33)



www.manaraa.com

165

The derivatives of
∼
T

(1)
that are required for computing

∼
H are given by

∇x ·
∼
T

(1)
= −k

2
c

γ

(
λn̂′ + 2µn̂′ · k̂k̂

)
Gc, (5.34a)

n̂ · ∇x
∼
T

(1)
= −k

2
c

γ
(n̂ · k̂)k̂

(
λn̂′ + 2µn̂′ · k̂k̂

)
Gc

− k2
s n̂ · k̂

[
n̂′ · k̂

(
I− k̂k̂

)
+ n̂′ ·

(
I− k̂k̂

)
k̂
]
Gs, (5.34b)

n̂ ·
∼
T

(1)
∇x = −k

2
c

γ
(n̂ · k̂)k̂

(
λn̂′ + 2µn̂′ · k̂k̂

)
Gc

− k2
s

[
(n̂′ · k̂)k̂

(
I− k̂k̂

)
· n̂ + n̂′ ·

(
I− k̂k̂

)
· n̂k̂k̂

]
Gs (5.34c)

= −k
2
c

γ
(n̂ · k̂)k̂

(
λn̂′ + 2µn̂′ · k̂k̂

)
Gc

− k2
s

[
(n̂′ · k̂)k̂

(
I− k̂k̂

)
· n̂ + n̂ ·

(
I− k̂k̂

)
· n̂′k̂k̂

]
Gs. (5.34d)

Therefore,

∼
H = −k

2
c

γ

[
λn̂
(
λn̂′ + 2µ(n̂′ · k̂)k̂

)
+ 2µ(n̂ · k̂)k̂

(
λn̂′ + 2µ(n̂′ · k̂)k̂

)]
Gc − k2

sµ[
(n̂ · k̂)(I− k̂k̂)(n̂′ · k̂) + (n̂ · k̂)n̂′ · (I− k̂k̂)k̂ + k̂(I− k̂k̂) · n̂(n̂′ · k̂) + n̂ · (I− k̂k̂) · n̂′k̂k̂

]
Gs,

(5.35)

which can be further simplified as

∼
H = −k

2
c

γ

[(
λn̂ + 2µ(n̂ · k̂)k̂

)(
λn̂′ + 2µ(n̂′ · k̂)k̂

)]
Gc − k2

sµ[
(n̂ · k̂)(I− k̂k̂)(n̂′ · k̂) + (n̂ · k̂)n̂′ · (I− k̂k̂)k̂ + k̂(I− k̂k̂) · n̂(n̂′ · k̂) + n̂ · (I− k̂k̂) · n̂′k̂k̂

]
Gs.

(5.36)

When the integral in (5.29) is discretized, diagonal form expansions of the HBIE kernels can be

derived using (5.33) and (5.36) along with (5.21). Rather than deriving these expansions and then

obtaining the expansions of far-field matrix elements defined in Chapter 4, the latter are derived

directly in the next section.
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5.4 Factorization of Far-field Matrix Elements

Recall that according to (4.110c), all far-field matrix elements can be written in the following

form

ZFβ,α(y
(q)
j ,y

(p)
i ) = wi ẽ

(q)
β (ξj) · F(y

(q)
j ,y

(p)
i ) · e(p)

α (ξi)J (ξi). (5.37)

Thus, every far-field matrix element is a function of two position vectors– one corresponding to the

interpolation basis and another to the collocation point. Let these two position vectors be referred

by x′ and x, respectively. We can rewrite the above in the following simplified notation

ZFβ,α(x,x′) = ẽβ(x) · F(x,x′) · eα(x′)W (x′). (5.38)

Henceforth, the dependence of quantities on x and x′ will not be shown explicitly unless when

necessary. Substituting the factorizations of the kernels derived in the previous section into the

above equation, we obtain factorizations for the matrix elements in the following form

ZFβ,α(x,x′) ≈
∫
S2
d2k̂ ZFβ,α(kc,ks). (5.39)

For the K(2) kernel, Equation (5.33) yields

ZKβ,α(kc,ks) = ẽβ ·
∼
K

(2)
· eαW = ZK,sβ,α (ks) + ZK,cβ,α (kc), (5.40)

where

ZK,cβ,α (kc) =− ikcẽβ · eikc·(x−x0)L(kc, r0)

{[
n̂

(
λ

γ
k̂ · eα

)
+ k̂

(
2µ

γ
(n̂ · k̂)(k̂ · eα)

)]
eikc·(x

′
0−x′)W

}
=− ikc

[(
(ẽβ · n̂)

λ

γ
+ (ẽβ · k̂)(n̂ · k̂)

2µ

γ

)
eikc·(x−x0)

]
L(kc, r0)

[
k̂ · eαeikc·(x

′
0−x′)W

]
(5.41)

and

ZK,sβ,α (ks) = −iksẽβ · eiks·(x−x0)L(ks, r0)

{[
(k̂ · n̂)

(
θ̂θ̂ + φ̂φ̂

)
· eα+

k̂n̂ ·
(
θ̂θ̂ + φ̂φ̂

)
· eα
]
eiks·(x

′
0−x′)W

}
. (5.42)
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We have used the fact that I− k̂k̂ = θ̂θ̂+ φ̂φ̂ in the above, where θ̂ and φ̂ are polar and azimuthal

unit vectors defined on S2. Separating the terms dependent on x and x′, we get

ZK,sβ,α (ks) = −iks
[(

ẽβ(k̂ · n̂) + ẽβ · k̂n̂
)
eiks·(x−x0)

]
· L(ks, r0)

[(
θ̂θ̂ + φ̂φ̂

)
· eαeiks·(x

′
0−x′)W

]
.

(5.43)

Similarly, the H kernel factorization is given by

ZHβ,α(kc,ks) = ẽβ ·
∼
H · eαW = ZH,sβ,α (ks) + ZH,cβ,α (kc), (5.44)

where

ZH,cβ,α (kc) = −k2
c

[(
(ẽβ · n̂)

λ

γ
+ (ẽβ · k̂)(n̂ · k̂)

2µ

γ

)
eikc·(x−x0)

]
L(kc, r0)[(

λ(n̂′ · eα) + 2µ(n̂′ · k̂)(k̂ · eα)
)
eikc·(x

′
0−x′)W

]
(5.45)

and

ZH,sβ,α (ks) = −k2
sµẽβ ·eiks·(x−x0)L(ks, r0)

{[
(n̂·k̂)(θ̂θ̂+φ̂φ̂)·eα(n̂′ ·k̂)+(n̂·k̂)(θ̂θ̂+φ̂φ̂)·n̂′(k̂·eα)+

k̂n̂ · (θ̂θ̂ + φ̂φ̂) · eα(n̂′ · k̂) + k̂n̂ · (θ̂θ̂ + φ̂φ̂) · n̂′(k̂ · eα)

]
eiks·(x

′
0−x′)W

}
. (5.46)

Separating the terms dependent on x and x′ in the above equation, we get

ZH,sβ,α (ks) = −k2
sµ
[(

ẽβ(k̂ · n̂) + ẽβ · k̂n̂
)
eiks·(x−x0)

]
· L(ks, r0)[(

θ̂θ̂ + φ̂φ̂
)
·
(
eαn̂′ · k̂ + n̂′k̂ · eα

)
eiks·(x

′
0−x′)W

]
. (5.47)

For any x,y, r0 ∈ R3, let Mp(x− y) := eikp·(x−y) and Lp(r0) = L(kp, r0) for p = s, c. Summa-

rizing the above results by writing quantities as functions of space coordinates only, we have the

following equations:

ZK,cβ,α (x,x′) = −ikcVβ(x,x0) Lc(r0) Vα(x′,x′0), (5.48a)

ZK,sβ,α (x,x′) = −iksVβ(x,x0) · Ls(r0) Vα(x′,x′0), (5.48b)
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where

Vβ(x,x0) =
1

γ
ẽβ ·

(
n̂λ+ k̂(n̂ · k̂)2µ

)
Mc(x− x0), (5.49a)

Vα(x′,x′0) = W (k̂ · eα)Mc(x
′
0 − x′), (5.49b)

Vβ(x,x0) = k̂ · (ẽβn̂ + n̂ẽβ)Ms(x− x0), (5.49c)

Vα(x′,x′0) = W (θ̂θ̂ + φ̂φ̂) · eαMs(x
′
0 − x′). (5.49d)

Using the fact that e3(x′) = J (x′)n(x′) = n̂′ for the chosen discretization basis functions,

ZH,cβ,α (x,x′) = −k2
cVβ(x,x0) Lc(r0)

(
λJ (x′)δ3αWMc(x

′
0 − x′) + 2µ(k̂ · n̂′)Vα(x′,x′0)

)
, (5.50a)

ZH,sβ,α (x,x′) = −µk2
sV

β(x,x0) · Ls(r0)
(
b3(x′)Vα(x′,x′0) + bα(x′)V3(x′,x′0)

)
, (5.50b)

where

bα(x′) =
k̂ · eα(x′)
J (x′)

. (5.51)

Notice that only the θ̂ and φ̂ components of the vectors Vβ(x,x0) and Vα(x′,x′0) need to be

stored, whereas three components of each vector would be required if Cartesian coordinates were

used. This leads to about 20 percent reduction in the memory required for storing the radiation

and receiving patterns [30, §5.3]. The factorizations in (5.48) and (5.50) lead to diagonal-form

expansions when the integral in (5.39) is discretized. Comparing the foregoing expansions with

the expansions for the CBIE kernels in [30, §5.3], we observe that they share the same radiation

patterns. Therefore, so far as the computation of radiation and receiving patterns is concerned, the

CFIE formulation requires additional operations (over CBIE) only in the calculation of receiving

patterns. Furthermore, the memory requirement for storing the patterns is the same irrespective

of the formulation (CBIE, HBIE or CFIE.)

5.5 Application of FMM to Matrix-Vector Products of Influence Matrix

This section explains how the FMM is applied for computing the product of the influence

matrix obtained in Chapter 4 with a vector. Note that every element in the matrix-vector product
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Figure 5.4: The two-dimensional scatterer, represented by the boundary S, is embedded in a

fictitious grid. Collocation point x lies in the group with index l. Groups that are adjacent to

group l are marked in red.

corresponds to one collocation point and is a sum involving both near-field and far-field matrix

elements.

5.5.1 Single Level Implementation

The expansions derived in the previous section apply only to the far-field matrix elements,

which are proportional to the kernel functions defined for a combination of a source point x′ and

an observation point x. Furthermore, they are valid only when the distance criteria |x0 − x′0| >

|x − x0 + x′0 − x′| is satisfied (see Figure 5.2). At the same time, for ideal efficiency of FMM, we

require the same transfer function to hold for all source and observation points (i.e., for all far-field

matrix elements). In other words, the points x0 and x′0 need to be fixed for all combinations of

source and observation points. The two conditions stated above express opposing requirements.

If x0 and x′0 are held fixed, the distance criteria holds only for some combinations of source and

observation points. A compromise is achieved by dividing the scatterer into groups such that x′0

and x0 are the same for all points in a group. The groups are generally defined by embedding the

scatterer into a fictitious three dimensional cubic grid, and the points x′0 and x0 are chosen to lie

at the centroids of the cubes.
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Figure 5.4 illustrates the grouping scheme in two-dimensions. Consider a collocation point x

lying in a group with index l. The groups which share a vertex with group l are called its adjacent

groups. For calculating the element in the matrix-vector product which corresponds to x, the

contributions from the part of the boundary lying in the adjacent groups are computed directly since

the distance criteria fails for some combinations of source and observation points lying in adjacent

groups. The contributions from non-adjacent groups are computed using multipole expansions.

Using the terminology from Section 5.3 and Equation (5.23) as an example, the procedure can be

described broadly in three steps:

1. For every group and for every direction given by q, evaluate the radiation pattern due to the

source points inside the group.

2. For every group and for every direction, evaluate the incoming radiation from its non-adjacent

groups by multiplying the corresponding transfer functions and radiation patterns, and sum-

ming the resulting products.

3. For every collocation point and for every direction, multiply its receiving pattern with the

incoming radiation associated with its group center. Performing the summation over all

directions (as shown, for example, in (5.22)) gives the contribution from the non-adjacent

groups to the given collocation point.

The multipole moments and receiving patterns corresponding to every source and collocation point,

respectively, are precalculated. The transfer functions between all non-adjacent groups are also pre-

calculated. Since far-field expansions are decomposed into longitudinal and shear components (see

(5.40)), the above steps have to be performed separately for the two components. The truncation

parameter LT in (5.16b) is defined in terms of the size of cubes (d) in the grid as follows [185,

§3.4.1]

LT = kd+ 1.8d
2/3
0 (kd)1/3, (5.52)

where d0 = log(1/ε) with ε representing the relative error due to truncation. In this implementation,

ε is set to 0.001 unless specified otherwise. The variable k is the wavenumber and is different
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Figure 5.5: An illustration of a multilevel grouping scheme in two dimensions. Collocation point is

x

for shear and longitudinal components. The integration over S2 is performed using the LT + 1

point Gauss-Legendre rule in the polar (θ) direction and the 2LT + 1 point trapezoidal rule in

the azimuthal (φ) direction [185, §3.4.3][166, §2.4.3]. Therefore, the number of quadrature points

(directions or modes) is dependent on the wavenumber through the truncation parameter and hence

is different for the longitudinal and shear components.

5.5.2 Multilevel Implementation

Multilevel implementation of the FMM is based on the observation that the multipole expansion

in (5.22) can be recentered at two new points y0 and y′0 by translating the multipole moments.

Letting r′0 = y0 − y′0, we have

g(x,x′) ≈
Q∑
q=1

wqM(k(q),x− x0) L(k(q), r0) M(k(q),x′0 − x′) (5.53a)

≈
Q∑
q=1

wqM(k(q),x− x0 + x0 − y0) L(k(q), r′0) M(k(q),y′0 − x′0 + x′0 − x′) (5.53b)

=

Q∑
q=1

wqM(k(q),x− x0)M(k(q),x0 − y0)

L(k(q), r′0)M(k(q),y′0 − x′0)M(k(q),x′0 − x′), (5.53c)
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where we have assumed that the truncation parameter and the number of modes are the same

after recentering. For the expansion to be accurate and efficient, these parameters have to depend

on the locations of the centers of expansion. However, this requirement is relaxed for illustrating

the multilevel implementation procedure. An interpolation technique is applied to account for the

level-dependence of parameters, as mentioned at the end of this section.

In general, an L-level implementation consists of L levels without counting level 0. A three-level

implementation in two dimensions is illustrated in Figure 5.5. The coarsest level (level 0) consists

of a bounding box enclosing the scatterer, forming a single group. Finer levels are obtained by

dividing each group into four subgroups. In three-dimensions, this leads to an octree structure. At

any level, say l, the interaction list of a group (whose index is j) is defined as the set of groups

that are not adjacent to group j and whose parent groups at level l − 1 are adjacent the parent

group of group j. The procedure for calculating the matrix-vector product can be described in the

following steps:

1. For every group in the finest level (level L) and for every direction, evaluate the radiation

patterns due to the source points in the group.

2. For every group from level L−1 to level 2, and for every direction, calculate the corresponding

radiation patterns by performing translations as indicated by (5.53c).

3. At level 2, for every group and for every direction, evaluate the incoming radiation from non-

adjacent groups by multiplying the corresponding transfer functions and radiation patterns,

and summing the resulting products.

4. From level 3 to level L, for every group and for every direction, evaluate its incoming radiation

by (a) computing the incoming radiation from its interaction list as in step 3, (b) computing

the incoming radiation from its parent group as indicated by (5.53c), and (c) summing the

contributions from (a) and (b).
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5. For every collocation point and for every direction, multiply its receiving pattern with the

incoming radiation associated with its group center. Performing the summation over all

directions gives the contribution from the non-adjacent groups to the given collocation point.

The transfer functions at every level, the multipole moments, and receiving patterns are pre-

computed. Note that because of the regularity of the grid and translational symmetry of the

transfer function, there is only a small number of r0 values for which the transfer function needs

to be evaluated at every level. The multilevel implementation is more efficient than the single-level

method because of reduction in the required number of transfer functions. For instance, in the

example in Figure 5.5, let K(l)(x) represent the index of the group that the point x lies in at level

l. The interaction between source points in the group K(2)(x′2) on one hand and collocation points

in the group K(2)(x) on the other are evaluated by mutlipole expansion between groups of size d2.

Whereas interactions between source points in the group K(3)(x′1) and collocation points in the

group K(3)(x) are evaluated by multipole expansion between groups of size d3. In a single-level

implementation using the grid of level 3, the group size is fixed at d3 even in the calculation of

interactions between x and x′2.

The foregoing description is based on the assumption that the number of modes does not change

with the level. This assumption is, however, invalid as the number of modes depends on the group

size through the truncation parameter LT . Both the number of modes and their directions (k̂
(q)

)–

in other words, the number of quadrature points and their locations– vary across levels, with coarser

levels requiring more number of modes. Therefore, local polynomial interpolation using six points

each in the θ and φ directions is used to perform steps 2 and 4 in the above procedure [185,

3.4.4][188]. In our implementation, a collocation or field interpolation point on a mesh triangle is

assumed to lie in a group if the centroid of the first-order triangle formed by the vertices lies in

the group. Unless mentioned otherwise, the box size at the finest level is set to 0.31λs or 1.5Lt,

whichever is higher, where λs is the shear wavelength and Lt is the maximum edge length in the

triangular mesh (for curvilinear triangles, the curved edge length is approximated by the distance

between the respective vertices). The size of bounding box at level 0 is adjusted slightly so that
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it is possible to achieve the specified (finest level) box size exactly upon refinement. Also, a block

Jacobi preconditioner is used wherein the DOFs are partitioned according to the grid at the finest

level [189, §3.2].

5.6 Numerical Results

5.6.1 Helical Strip

The first validation example consists of a traction-free helical strip (open surface) as shown in

Figure 5.6. The strip is embedded in an otherwise homogeneous material with mass density (ρ) and

Lamé constants (λ, µ) given by 1 kg/m3, 1 N/m2 and 1 N/m2, respectively. A longitudinal plane-

wave traveling in the +z-direction with frequency 1 Hz is incident on the strip. The dimensions of

the strip are: Ls = 4λs, H = 2.148λs, E = 0.195λs, R = 0.542λs, where Ls is the length along the

strip and λs is the shear wavelength. The strip is discretized with 40 first-order nearly-equilateral

triangles, and the first column in the BEM influence matrix is calculated (separately) with and

without MLFMM (with Rule-12 discretization, see Section 3.3 for nomenclature). In the MLFMM

calculation, the box size of the finest level is set to 0.28λs, which gives L = 4 levels. The relative

errors for elements in the first column are shown in Figure 5.7, where the values obtained without

MLFMM are taken as reference. The matrix elements computed using MLFMM are within about

1% error compared to the reference. Note that the relative error is smaller if the diagonal element

is used as reference.

5.6.2 Traction-free Sphere

The second validation example involves a traction-free sphere embedded in an otherwise homo-

geneous medium with the following material properties: ρ = 1 N/m2, λ = 2 N/m2 and µ = 1 N/m2.

The sphere is assumed to be centered at the origin, and a longitudinal plane wave travelling in the

+z-direction is incident on it. A spherical coordinate is assumed, with θ denoting the polar angle.

The frequency of the incident wave is 1 Hz. This scattering problem is solved using MLFMM with

Rule-22 BEM discretization. The number of mesh elements is 320, and the CFIE formulation with
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Figure 5.6: A traction-free helical strip.
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Figure 5.7: Relative error for elements in the first column of influence matrix. For any index j, Z1j

represents the matrix element in column 1 and row j.
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Figure 5.8: Magnitude of scattered displacement field at r = 5a. Radial and polar components are

represented as ur and ut, respectively. All fields are normalized by the radius of the sphere.

0 30 60 90 120 150 180

 (Degrees)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
el

at
iv

e 
E

rr
o

r 
(%

)

Radial

Polar

Figure 5.9: Relative error in the scattered displacement at r = 5a.



www.manaraa.com

177

coupling coefficient β = i is used. Box size at the finest level (L = 3) is 0.49λs. Figure 5.8 shows

the radial and polar components of scattered displacement field at a distance r = 5a, where a is the

radius of the sphere. The analytical solution calculated from the separation-of-variables technique

is also shown for reference [13, §10.6.2]. The relative error is defined as |uα−uref|/maxθ |uref|, where

α = r, s and uref is the corresponding reference solution. The relative errors are shown in Fig-

ure 5.9. The error in the polar component is higher than that of the radial component because the

contribution from shear waves (relative to longitudinal waves) is higher for the polar component.

Figure 5.10 shows the relative errors separately for the longitudinal and shear wave components

of both radial and polar displacement fields. Shear wave components have higher errors than the

longitudinal waves.

5.6.3 CPU Time and Memory Scaling

Consider a traction-free sphere as in the previous section. The host material parameters are:

ρ = 3 N/m2, λ = 1 N/m2 and µ = 1 N/m2. We consider four different scattering problems wherein

the frequency is 0.5 Hz, 1 Hz, 2 Hz, and 4 Hz, respectively. They are solved by applying the

MLFMM-accelerated BEM (Rule-22 discretization) to the HBIE formulation. The number of mesh

elements is set such that the average number of nodes per shear wavelength is around 13. Therefore,

number of DOFs increases by a factor of four when the frequency is doubled. In all cases, the box

size at the finest level is around 0.85λs. Figure 5.11 shows the CPU time per iteration and the

memory requirement as a function of the number of DOFs. The simulation results were obtained

by means of a C++ numerical implementation on a Dell Precision T7500 workstation with two

quad-core 2.13 GHz processors and 24 GB memory but using only a single core. As expected, both

CPU time and memory requirement show an O(N logN) behaviour.

5.7 Concluding Remarks

In this chapter, MLFMM is applied to the high-order BEM developed in Chapter 4. The

diagonal-form expansions derived for the CFIE kernels are new. Evaluation of the contribution
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Figure 5.11: CPU time per iteration and memory requirement as a function of the number of DOFs

for solving a scattering from a traction-free sphere using HBIE formulation. An O(N logN) curve

is shown for reference.
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of far-field elements to the matrix-vector product is simplified since the CBIE and HBIE kernels

share the same radiation patterns. Also, the memory storage cost associated with the far-field

contribution is the same regardless of which formulation– CBIE, HBIE or CFIE– is used. Numerical

results presented here demonstrate the validity of the method. The next chapter will include some

applications to practical UNDE problems.
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CHAPTER 6. IRREGULAR FREQUENCIES IN ELASTODYNAMIC

BOUNDARY INTEGRAL EQUATIONS

Despite the elastic-wave scattering problem (EWSP) being well-conditioned at all frequencies,

the CBIE and HBIE reformulations of the EWSP admit multiple solutions at some frequencies.

This artifact is known as the fictitious eigenfrequency problem. The frequencies where it occurs

are known as irregular frequencies or fictitious eigenfrequencies. This chapter provides a mathe-

matical description of this problem and illustrates it using numerical examples. It demonstrates

the relevance of this ill-conditioning to ultrasonic NDE modeling using examples from practical

testing scenarios. It is well-known that the CFIE-formulation is free from irregular frequencies for

a proper choice of the coupling constant. Since the fast-multipole BEM model proposed in this

thesis is based on the CFIE-formulation, it models the EWSP more accurately and efficiently than

models based on CBIE and HBIE formulations. Some numerical examples are shown at the end of

this chapter for validating this.

6.1 Introduction

Recall that the EWSP introduced in Chapter 4 has unique solutions at all frequencies. The

EWSP entails the conventional and hypersingular BIEs, but the converse is not always true. In

other words, although all solutions of the EWSP are solutions to the BIEs, not every solution of the

BIEs is a solution to the EWSP. Both conventional and hypersingular BIEs have multiple solutions

at some frequencies called irregular frequencies. The next section presents a partial proof for this

phenomenon. For the two-dimensional case, Martin [190] proved that the irregular frequencies

of the CBIE coincide with the eigenfrequencies of an interior Dirichlet problem defined using the

scatterer and vice-versa. Similar proofs for the three-dimensional case are not available as far as

we know. However, it is well-known from numerical evidence that this result extends to three-
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dimensional problems. Similarly, the irregular frequencies of the HBIE are the eigenfrequencies of

an interior boundary-value problem with traction-free boundary conditions. Parallels with BIEs

outside elastodynamics further support these results. See [191–193] for example.

Ill-conditioning due to irregular frequencies is a serious impediment to the application of BIEs for

modeling elastic-wave scattering. The BEM influence matrix is singular at the irregular frequencies,

which implies the existence of multiple solutions. In this case, it is not easy to find even a single

solution. Even if a solution was found, it may not be the one that solves the EWSP. This situation,

however, is rare since it occurs only at a few distinct frequency points in a whole frequency range.

In practice, it is more likely that a given simulation frequency lies close to but not exactly at an

irregular frequency. In that case, the influence matrix has a high condition number. This affects the

accuracy of the solutions even when direct methods are used. The error may be higher for iterative

methods since they may be viewed as solving a linear system with a perturbed right-hand side; thus,

small changes in the right-hand side may lead to large errors in the solution. Also, computational

performance deteriorates as a large number of iterations are required for convergence.

Since UNDE applications require solutions over multiple frequencies in a given bandwidth range,

it is practically impossible to avoid simulating the model close to the irregular frequencies owing to

the following reasons. First, although the irregular frequencies are known to be the eigenfrequencies

of certain problems, it takes much computational effort to compute them. Therefore, a priori

knowldge of the irregular frequencies comes only at a significant expense. Second, even if the

locations of the irregular frequencies are known, it is possible to avoid simulating close to them only

if they are located sparsely in the frequency range of our interest. This condition is satisfied only

if the scatterer is relatively small compared to the wavelengths in the given frequency range since

eigenfrequencies become more closely spaced with an increase in the relative size of the scatterer.

Therefore, UNDE scattering models should be based on well-conditioned BIE formulations. The

CFIE formulation described in Section 4.2.8 is well-conditioned if the coupling constant β is chosen

as the complex number i. The resulting BIE is known as the Burton-Miller BIE (BM-BIE) [194, 195]

(by analogy with acoustics problems). The previous two chapters describe the application of a fast-
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multipole BEM to the BM-BIE, and, more generally, to the CFIE. Numerical examples presented in

this chapter will validate that this implementation is free from irregular frequencies. The importance

of BM-BIE in UNDE applications is revealed by contrasting some of these results with those of

ill-conditioned formulations.

6.2 Mathematical Description

The CBIE formulation from Section 4.2.8 is reproduced in Equation (6.1). This formulation is

derived from the EWSP, and thus every solution of the EWSP is also a solution to (6.1). Since a

unique solution for the EWSP exists at all frequencies, the CBIE also admits at least one solution

at all frequencies. Therefore, for any frequency, the CBIE is equivalent to the EWSP if it has a

unique solution for that frequency. In other words, the CBIE is not equivalent to the EWSP for

any frequency if and only if it has multiple solutions.−U+
S

2T +
S −

I
2

−U−S 2T −S +
I
2


t(x)

u(x)

 =

−uI(x)

0

 . (6.1)

A necessary and sufficient condition for the existence of multiple solutions for (6.1) is that there

exist non-zero fields t(x) and u(x) defined on the surface S of the scatterer such that−U+
S

2T +
S −

I
2

−U−S 2T −S +
I
2


t(x)

u(x)

 =

0

0

 (6.2)

for x ∈ S. The reason for this is that if there exist two distinct sets of solutions given by t1(x),

u1(x) and t2(x), u2(x), then the fields t1(x) − t2(x) and u1(x) − u2(x) satisfy (6.2). Conversely,

if there exists a solution for (6.2), it can be added to the solution of the EWSP to get a different

solution for the CBIE. Numerical evidence indicates that non-trivial fields satisfying (6.2) exist at

all the frequencies that coincide with the eigenfrequencies of the following interior Dirichlet problem

(IDP):

(λ+ + µ+)∇∇ · ud(x) + µ+∇2ud(x) + ρ+ω
2ud(x) = 0 for x ∈ V, (6.3a)
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ud(x) = 0 for x ∈ S, (6.3b)

where V is the region inside the scatterer. It is easy to show the coincidence of the irregular

frequencies determined from (6.2) and the eigenfrequencies of the IDP in the special case wherein

the scatterer is rigid. It is much harder to show this in the general case. Alternatively, using a

proof similar to [190, Theorem 1], the solutions of (6.1) can be shown to solve the EWSP at all

frequencies except the eigenfrequencies of the IDP. This proves the required result partially as it

shows that non-unique solutions to the CBIE can exist only at the eigenfrequencies of the IDP.

Proving that non-unique solutions do indeed exist at every eigenfrequency is difficult.

Now consider the special case of a rigid scatterer. The CBIE in Equation (6.1) reduces to

−U+
S t̃(x) = −uI(x). (6.4)

Similarly, Equation (6.2) reduces to

−U+
S t(x) = 0. (6.5)

It follows from Section 4.2.6 that any field satisfying (6.3a) should also satisfy the second equation

in the CBIE formulation given by (6.1), with the operators redefined using the material parameters

in (6.3a). Therefore,

−U+
S td(x) +

(
2T +
S +

I
2

)
ud(x) = 0, (6.6)

where td(x) is the traction field obtained from ud(x). Using (6.3b), this further reduces to

−U+
S td(x) = 0. (6.7)

This shows that (6.5) is satisfied by choosing t(x) as td(x). Therefore, the CBIE for the rigid

scatterer has non-unique solutions at every eigenfrequency of the IDP. Conversely, if (6.5) is given,

we are allowed to choose td(x) = t(x) and ud(x) = 0 for x ∈ S since these fields on the boundary

are consistent with (6.6). Then, the representation theorem (4.26) gives the displacement field for

x ∈ V as

ud(x) =

∫
S

td(x
′) ·G+(x,x′) dS(x′). (6.8)
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The field ud(x) as defined above can be verified to satisfy (6.3a) using (4.17) and (4.19). Therefore,

irregular frequencies occur only at the eigenfrequencies of the IDP. This proves the coincidence

between irregular frequencies of the CBIE and eigenfrequencies of the IDP for rigid scatterers.

The HBIE is reproduced below:−2K+
S +
I
2
H+
S

−2K−S −
I
2
H−S


t(x)

u(x)

 =

tI(x)

0

 . (6.9)

As in the case of the CBIE, a necessary and sufficient condition for non-uniqueness of the solutions

of HBIE is that there exist non-trivial fields t(x) and u(x) on S such that−2K+
S +
I
2
H+
S

−2K−S −
I
2
H−S


t(x)

u(x)

 =

0

0

 . (6.10)

This condition is satisfied at all and only the eigenfrequencies of the following interior boundary-

value problem:

(λ+ + µ+)∇∇ · un(x) + µ+∇2un(x) + ρ+ω
2un(x) = 0 for x ∈ V, (6.11a)

tn(x) = 0 for x ∈ S, (6.11b)

where tn(x) is the traction field on S corresponding to the displacement un(x). When the scatterer

is soft, (6.9) and (6.10) reduce to the following equations

H+
S ũ(x) = tI(x), (6.12)

H+
Su(x) = 0, (6.13)

respectively. Since the displacement and traction fields that satisfy (6.11) should also satisfy the

second equation in (6.9), with the operators redefined using the material parameters in (6.11), we

have

H+
Sun(x) = 0. (6.14)
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Therefore, every eigenfrequency of (6.10) is an irregular frequency. Conversely, if (6.10) is given,

we can choose un(x) = u(x) and tn(x) = 0 for x ∈ S. The displacement field in V is given by the

representation formula as

un(x) =

∫
S

un(x′) ·
[
n̂(x′) ·Σ(1)(x,x′)

]
dS(x′), (6.15)

which can be shown to satisfy (6.11) by applying the operator λ+I∇ · +µ+

(
∇+∇T

)
on (4.19),

knowing that x′ 6= x. Therefore, irregular frequencies occur only at the eigenfrequencies of the

interior boundary value problem with traction-free boundary condition.

6.3 Eigenfrequencies of Sphere

The next section illustrates the irregular frequency problem by numerically solving the CBIE

and HBIE formulations for scattering from a sphere. Analytical solutions for the eigenfrequencies

of a sphere are derived in this section for comparison with the irregular frequencies. We consider a

homogeneous, isotropic elastic sphere under both traction-free and rigid boundary conditions. In

the rigid boundary case, the eigenfrequency problem consists of finding non-trivial solutions for the

displacement field u(x) which simultaneously satisfies (6.16a) and (6.16b).

µ∇2u(x) + (λ+ µ)∇∇ · u(x) = −ρω2u(x) for x ∈ V, (6.16a)

u(x) = 0 for x ∈ S, (6.16b)

where λ, µ are the Lamé constants, ρ is the mass density, ω is the radian frequency, V is the region

inside the sphere and S is its boundary. In the soft boundary condition case, (6.16b) is replaced

with (6.17).

t(x) = 0 for x ∈ S, (6.17)

where t(x) is the traction field on S. In the following, the radius of the sphere is represented by

the letter a. A spherical coordinate system with the position vector given by r = (r, θ, ϕ) and unit

vectors given by r̂, θ̂, ϕ̂ is assumed.
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By Helmholtz decomposition of the vector field u, there exist scalar and vector fields γ and Γ,

respectively, such that

u(x) = ∇γ(r) +∇× Γ(r). (6.18)

By substituting (6.18) in (6.16a), it can be shown that (6.16a) is satisfied only if the potentials

satisfy the following wave equations [158, §5.4]:

∇2γ + k2
pγ = 0, (6.19a)

∇2Γ + k2
sΓ = 0. (6.19b)

Here, kp = ω/cp and ks = ω/cs, with cp and cs representing the longitudinal and shear wave speeds

in the material, respectively. The above result does not depend on the choice of a gauge condition

such as ∇ ·Γ = 0. Conversely, if there exist fields γ and Γ satisfying (6.19), then the displacement

field defined using (6.18) satisfies (6.16a). From this, it can be shown that every field that satisfies

(6.16a) can be decomposed into a linearly independent set of modes, where the modes correspond to

an ordered pair of positive integers (n,m) with m < n, and where the displacement corresponding

to the mode (n,m) is given by:

unm =
a1

kp
∇φnm + a2Mnm + a3Nnm, (6.20a)

Mnm = ∇× (ψnmrr̂) = ∇ψnm × rr̂, (6.20b)

Nnm =
1

ks
∇×∇× (ψnmrr̂) =

1

ks
∇×Mnm. (6.20c)

In the above, ai for i ∈ {1, 2, 3} represent coefficients that depend on the boundary conditions.

In general, they vary from one mode to the other. The fields φnm and ψnm are given by

φnm = jn(kpr)P
m
n (cos θ)

{
sin(mϕ)

cos(mϕ)

}
, (6.21a)

ψnm = jn(ksr)P
m
n (cos θ)

{
sin(mϕ)

cos(mϕ)

}
, (6.21b)

where jn is the spherical Bessel function of the first kind of order n and Pmn is an associated Legendre

function. For different values of n and m, Equations (6.21) represent the general solutions to scalar

Helmholtz equations with wavenumbers kp and ks, respectively.
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In the following derivation, the subscripts of the fields are dropped for convenience. Substituting

(6.21) into (6.20), the longitudinal component of the displacement for mode (m,n) is simplified to

a1

kp
∇φ = a1

[
r̂j′n(kpr)P

m
n (cos θ) +

1

kpr
θ̂jn(kpr)

dPmn (cos θ)

dθ

]{
sin(mϕ)

cos(mϕ)

}
+
a1m

kpr
ϕ̂jn(kpr)

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
. (6.22)

Similarly, the shear components are given by

a2M = a2∇ψ × rr̂ = θ̂a2mjn(ksr)
Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
− ϕ̂a2jn(ksr)

dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
,

(6.23)

a3N =
a3

ks
∇×M =ϕ̂a3m [ksrjn(ksr)]

′ P
m
n (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
+

a3

ksr

[
r̂n(n+ 1)jn(ksr)P

m
n (cos θ) + θ̂ [ksrjn(ksr)]

′ dP
m
n (cos θ)

dθ

]{
sin(mϕ)

cos(mϕ)

}
.

(6.24)

Therefore, the components of displacement in spherical coordinates are

ur =

[
a1j
′
n(kpr) +

a3

ksr
n(n+ 1)jn(ksr)

]
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
, (6.25a)

uθ =a2 m jn(ksr)
Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
+[

a1

kpr
jn(kpr) +

a3

ksr
[ksrjn(ksr)]

′
]
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
, (6.25b)

uϕ =− a2 jn(ksr)
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+

m

[
a1

kpr
jn(kpr) +

a3

ksr
[ksrjn(ksr)]

′
]
Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
. (6.25c)

The traction field is determined from the following constitutive relation:

t = λn̂∇ · u + µn̂ ·
(
∇u + (∇u)T

)
, (6.26)

where n̂ is the outward unit normal vector on the surface of the sphere, which is, hence, equal to

r̂. Since

∇ · u =
a1

kp
∇2φ = −a1kpφ, (6.27a)
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r̂ ·
(
∇u + (∇u)T

)
= r̂2

∂ur
∂r

+ θ̂

[
∂uθ
∂r

+
1

r

(
∂ur
∂θ
− uθ

)]
+ ϕ̂

[
∂uϕ
∂r

+
1

r

(
1

sin θ

∂ur
∂ϕ
− uϕ

)]
,

(6.27b)

we have

tr = −λkpφ+ 2µ
∂ur
∂r

. (6.28)

For any real number z, let Ĵn(z) = zjn(z) and J̃n(z) = jn(z)/z. The components of the traction

field can be simplified to the following:

tr
2µ

=

(
a1kp

[
j′′n(kpr)−

λ

2µ
jn(kpr)

]
+ a3ksn(n+ 1)J̃ ′n(ksr)

)
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
, (6.29a)

tθ
2µ

=
∂uθ
∂r

+
1

r

(
∂ur
∂θ
− uθ

)
=ma2ks

[
j′n(ksr)− J̃n(ksr)

] Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
+(

2a1

r

[
j′n(kpr)− J̃n(kpr)

]
+
a3

r

[
[n(n+ 1)− 2] J̃n(ksr) + ksrj

′′
n(ksr)

])
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
, (6.29b)

tϕ
2µ

=
∂uϕ
∂r

+
1

r

(
1

sin θ

∂ur
∂ϕ
− uϕ

)
=a2ks

[
J̃n(ksr)− j′n(ksr)

] dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+

m

(
2a1

r

[
j′n(kpr)− J̃n(kpr)

]
+
a3

r

[
[n(n+ 1)− 2] J̃n(ksr) + ksrj

′′
n(ksr)

])
Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
. (6.29c)

Due to linear independence between the modes, each mode needs to separately satisfy the boundary

conditions for it to contribute to the total fields non-trivially.

6.3.1 Rigid Boundary

We apply the boundary condition (6.16b) by setting the displacement field at r = a to zero,

and seek the frequencies (or, equivalently, the wavenumbers) at which non-trivial solutions for
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the displacement (or, equivalently, the coefficients a1, a2 and a3) occur. Note that ks and kp are

related to each other by the elastic constants of the material. Equating each component of the

displacement to zero over all angles (assuming n 6= 0), we get the following conditions which must

be simultaneously satisfied

a1j
′
n(kpa) +

a3

ksa
n(n+ 1)jn(ksa) = 0, (6.30a)

a2mjn(ksa) = 0,
a1

kpa
jn(kpa) +

a3

ksa
[ksajn(ksa)]′ = 0, (6.30b)

a2jn(ksa) = 0, m

[
a1

kpa
jn(kpa) +

a3

ksa
[ksajn(ksa)]′

]
= 0. (6.30c)

The above equations can be reduced to the following system of independent equations

a1j
′
n(kpa) +

a3

ksa
n(n+ 1)jn(ksa) = 0, (6.31a)

a2jn(ksa) = 0, (6.31b)

a1

kpa
jn(kpa) +

a3

ksa
[ksajn(ksa)]′ = 0. (6.31c)

Rewriting the above in a matrix form yields
j′n(kpa) 0 1

ksa
n(n+ 1)jn(ksa)

0 jn(ksa) 0

1
kpa

jn(kpa) 0 1
ksa

[ksajn(ksa)]′



a1

a2

a3

 = 0. (6.32)

Observe that the equations involving a1 and a3 are not coupled to the equation involving a2.

From this, one can show that the eigen frequencies split into two distinct classes: one for which

a1 = a3 = 0 and another for which a2 = 0.

6.3.1.1 Class 1 Modes

For Class 1 modes, a1 = a3 = 0 and a2 6= 0, and the displacement is given by

u = jn(ksr)

[
θ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
− ϕ̂dP

m
n (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}]
. (6.33)
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For n = 0, m has to be zero. Also, since P 0
0 (cos θ) = 1, the displacement vanishes for n = 0.

Therefore, non-trivial solutions exist only for n 6= 0. For n 6= 0, eigenfrequencies are determined

from the following equation

jn(ksa) = 0. (6.34)

Let the zeros of jn(ksa) occur at ζnq for q = 1, 2, 3 . . .∞. The corresponding eigenfrequencies are

ω
(1)
nq = ζnqcs/a. Observe that Class 1 modes are independent of the Poisson’s ratio if the shear

wave speed is specified.

6.3.1.2 Class 2 Modes

For Class 2 modes, a1, a3 6= 0 and a2 = 0, and the displacement field is

u =r̂

[
a1j
′
n(kpr) +

a3

ksr
n(n+ 1)jn(ksr)

]
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
+

θ̂

[
a1

kpr
jn(kpr) +

a3

ksr
[ksrjn(ksr)]

′
]
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+

ϕ̂m

[
a1

kpr
jn(kpr) +

a3

ksr
[ksrjn(ksr)]

′
]
Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
. (6.35)

Using identity (6.45b) to replace the derivatives, we get

u =r̂

[
a1

(
jn−1(kpr)−

n+ 1

kpr
jn(kpr)

)
+

a3

ksr
n(n+ 1)jn(ksr)

]
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
+[

a1

kpr
jn(kpr) +

a3

ksr

(
ksrjn−1(ksr)− njn(ksr)

)]
[
θ̂
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+ ϕ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}]
. (6.36)

The eigen frequencies are determined from the following equation (assuming n 6= 0)

j′n(kpa) [ksajn(ksa)]′ =
n(n+ 1)

kpa
jn(ksa)jn(kpa), (6.37)

which simplifies to

[kpajn−1(kpa)− (n+ 1)jn(kpa)] [ksajn−1(ksa)− njn(ksa)] = n(n+ 1)jn(ksa)jn(kpa). (6.38)
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For n = 0, the displacement reduces to

u = a1j
′
0(kpr) r̂ = −a1j1(kpr) r̂. (6.39)

The corresponding eigenfrequencies are obtained from the condition

j′0(kpa) = 0. (6.40)

Since j′0(kpa) = −j1(kpa) = sin(kpa)/(kpa)2−cos(kpa)/kpa, the eigen frequencies are obtained from

solutions of the following equation:

tan(kpa) = kpa. (6.41)

Let kpa = ξ0q (for q = 1, 2, . . . ) be the solutions of this equation. Note that according to the

definition of ζnq in Section 6.3.1.1, ξ0q = ζ1q. The shear wavenumbers are given by ksa = ζ1qcp/cs.

The first twenty Class 1 and Class 2 eigenfrequenices for the rigid boundary case are listed in

Table 6.1, where Class 2 eigenfrequencies for n = 0 correspond to ζ11 = 4.49340945790906 and

ζ12 = 7.72525183693771.

6.3.2 Traction-free Boundary

For traction-free boundary condition, t = 0 at r = a for all angles. As in the case of the rigid

boundary condition, setting each component of traction to zero yields three independent equations.

These are

a1kp

[
j′′n(kpa)− λ

2µ
jn(kpa)

]
+ a3ksn(n+ 1)J̃ ′n(ksa) = 0. (6.42a)

2a1

a

[
j′n(kpa)− J̃n(kpa)

]
+
a3

a

[(
n(n+ 1)− 2

)
J̃n(ksa) + ksaj

′′
n(ksa)

]
= 0. (6.42b)

a2ks

[
J̃n(ksa)− j′n(ksa)

]
= 0. (6.42c)

Simplifying the above into a matrix form, we can write
c11 0 c13

c21 0 c23

0 c32 0



a1

a2

a3

 = 0, (6.43)
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Table 6.1: Eigenfrequencies for rigid boundary condition.

Class 1
Class 2

ν = 0.1 ν = 0.25

ksa n q ksa n q ksa n q

4.4934094579 1 1 3.7090232164 1 1 3.9897788303 1 1

5.7634591969 2 1 5.3924416817 2 1 5.7750982326 2 1

6.9879320005 3 1 6.1482576116 1 2 6.2029629965 1 2

7.7252518369 1 2 6.7401141869 0 1 7.2928444987 3 1

8.1825614526 4 1 6.8965368890 3 1 7.7359420389 2 2

9.0950113305 2 2 7.5682016314 2 2 7.7828134803 0 1

9.3558121110 5 1 8.2857012396 4 1 8.6533116453 4 1

10.4171185474 3 2 8.8005097416 1 3 9.2585575331 1 3

10.5128354081 6 1 8.9961365547 3 2 9.3225153930 3 2

10.9041216594 1 3 9.4247779608 1 4 9.9237449673 5 1

11.6570321925 7 1 9.5949205388 5 1 10.3278157116 1 4

11.7049071546 4 2 10.4343585735 4 2 10.6701294368 2 3

12.3229409706 2 3 10.4419342460 2 3 10.9225361933 4 2

12.7907817120 8 1 10.8481610844 6 1 11.1413141242 6 1

12.9665301728 5 2 11.1878413384 2 4 12.0668676568 3 3

13.6980231532 3 3 11.5878777554 0 2 12.3255962825 7 1

13.9158226105 9 1 11.8666791855 3 3 12.4914680586 5 2

14.0661939128 1 4 11.8747644290 5 2 12.4975549688 1 5

14.2073924588 6 2 12.0619160438 7 1 12.5914424974 2 4

15.0334693037 10 1 12.4717985040 1 5 13.3805286828 0 2
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where

c11 = kp

[
j′′n(kpa)− λ

2µ
jn(kpa)

]
, (6.44a)

c13 = ksn(n+ 1)J̃ ′n(ksa), (6.44b)

c21 = 2
[
j′n(kpa)− J̃n(kpa)

]
, (6.44c)

c23 = [n(n+ 1)− 2] J̃n(ksa) + ksaj
′′
n(ksa), (6.44d)

c32 = J̃n(ksa)− j′n(ksa). (6.44e)

These matrix elements can be simplified further and written only in terms of the spherical Bessel

functions of various orders without involving their derivatives. To this end, the following identities

will be useful

zJ̃ ′n(z) = j′n(z)− J̃n(z), (6.45a)

j′n(z) =
n

z
jn(z)− jn+1(z) = jn−1(z)− n+ 1

z
jn(z), (6.45b)

j′′n(z) =
n(n+ 1)− z2

z2
jn(z)− 2

z
j′n(z) =

n(n− 1)− z2

z2
jn(z) +

2

z
jn+1(z) (6.45c)

=
(n+ 1)(n+ 2)− z2

z2
jn(z)− 2

z
jn−1(z) (6.45d)

for any real number z, and

[n(n+ 1)− 2] J̃n(ksr) + ksrj
′′
n(ksr) =

2(n2 + n− 1)− (ksr)
2

ksr
jn(ksr)− 2j′n(ksr) (6.45e)

=
2
(
n2 − 1

)
− (ksr)

2

ksr
jn(ksr) + 2jn+1(ksr) (6.45f)

=
2n (n+ 2)− (ksr)

2

ksr
jn(ksr)− 2jn−1(ksr) (6.45g)

for any real number r. Also,

λ

2µ
=

ν

1− 2ν
=

k2
s

2k2
p

− 1, (6.45h)

where ν is the Poisson’s ratio.
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For the purpose of normalization, the first equation is multiplied with the radius of the sphere.

Therefore, both c11 and c13 are scaled up by the factor a. The normalized quantities are represented

by c̃11 and c̃13. Substituting identities (6.45c) and (6.45h) into (6.44a), we get

c̃11 =
2n(n− 1)− (ksa)2

2kpa
jn(kpa) + 2jn+1(kpa) (6.46a)

=
2(n+ 1)(n+ 2)− (ksa)2

2kpa
jn(kpa)− 2jn−1(kpa). (6.46b)

Note that an extra factor of a in the denominator is canceled due to normalization. Similarly, using

(6.45a) and (6.45b) in (6.44b), we get

c̃13

n(n+ 1)
=
n− 1

ksa
jn(ksa)− jn+1(ksa) = jn−1(ksa)− n+ 2

ksa
jn(ksa). (6.46c)

Likewise, for the other matrix elements, we have

c21

2
=
n− 1

kpa
jn(kpa)− jn+1(kpa) = jn−1(kpa)− n+ 2

kpa
jn(kpa), (6.46d)

c23 =
2
(
n2 − 1

)
− (ksa)2

ksa
jn(ksa) + 2jn+1(ksa) (6.46e)

=
2n (n+ 2)− (ksa)2

ksa
jn(ksa)− 2jn−1(ksa), (6.46f)

c32 = −ksaJ̃ ′n(ksa) = − c̃13

n(n+ 1)
. (6.46g)

Equation (6.43) indicates that the eigenfrequencies split into two distinct classes: one for which

a1 = a3 = 0 and another for which a2 = 0.

6.3.2.1 Class 1 Modes

For Class 1 modes, a1 = a3 = 0 and a2 6= 0, and the traction field is given by

t

2µ
= a2ks

[
j′n(ksr)− J̃n(ksr)

] [
θ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
− ϕ̂ks

dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}]
(6.47a)

= a2ks

[
n+ 2

ksa
jn(ksr)− jn−1(ksr)

]
[
θ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

}
− ϕ̂ks

dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}]
. (6.47b)
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The traction field vanishes for n = 0. For n 6= 0, the eigenfrequencies are obtained by solving

n− 1

ksa
jn(ksa)− jn+1(ksa) = jn−1(ksa)− n+ 2

ksa
jn(ksa) = 0, (6.48)

where (6.46g) and (6.46c) are used. For n = 1, this simplifies to

j2(ksa) = 0, (6.49)

which is same as

tan(ksa) =
3ksa

3− (ksa)2
. (6.50)

According to the definition of ζnq in Section 6.3.1.1, the solutions of this equation are ksa = ζ2q

(for q = 1, 2, . . .). Note that ζ2q are independent of the Poisson’s ratio. The first two solutions are:

ζ21 = 5.76345919689455 and ζ22 = 9.09501133047636.

6.3.2.2 Class 2 Modes

For Class 2 modes, a2 6= 0 and a1, a3 6= 0, and the traction field is given by

t

2µ
= r̂

(
a1kp

[
j′′n(kpr)−

λ

2µ
jn(kpr)

]
+ a3ksn(n+ 1)J̃ ′n(ksr)

)
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
+(

2a1

r

[
j′n(kpr)− J̃n(kpr)

]
+
a3

r

[
[n(n+ 1)− 2] J̃n(ksr) + ksrj

′′
n(ksr)

])
(
θ̂
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+ ϕ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

})
. (6.51)

This can be rewritten as

t

2µ
= r̂
(
a1kpT1 + a3ksn(n+ 1)T3

)
Pmn (cos θ)

{
sin(mϕ)

cos(mϕ)

}
+(

2a1

r

∼
T 1 +

a3

r

∼
T 3

)(
θ̂
dPmn (cos θ)

dθ

{
sin(mϕ)

cos(mϕ)

}
+ ϕ̂m

Pmn (cos θ)

sin θ

{
cos(mϕ)

− sin(mϕ)

})
, (6.52)

where

T1 =
2(n+ 1)(n+ 2)− (ksr)

2

2(kpr)2
jn(kpr)−

2jn−1(kpr)

kpr
(6.53)

=
2n(n− 1)− (ksr)

2

2(kpr)2
jn(kpr) +

2jn+1(kpr)

kpr
, (6.54)
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T3 =
jn−1(ksr)

ksr
− n+ 2

(ksr)2
jn(ksr), (6.55)

∼
T 1 = jn−1(kpr)−

n+ 2

kpr
jn(kpr), (6.56)

∼
T 3 =

2n (n+ 2)− (ksr)
2

ksr
jn(ksr)− 2jn−1(ksr). (6.57)

The eigenfrequencies are determined by solving

c̃11c23 − c21c̃13 = 0, (6.58)

which can be expressed in terms of spherical Bessel functions using (6.46). For the special case of

n = 0, the traction reduces to

t

2µ
= r̂a1kpT1. (6.59)

The equation for eigenfrequencies reduces to

tan(kpa) =
4kpa

4− (ksa)2
. (6.60)

The first twenty Class 1 and Class 2 eigenfrequenices for the traction-free boundary case are listed

in Table 6.2.

6.4 Numerical Examples

In all examples, the incident wave is a longitudinal plane wave traveling in the +z-direction. For

problems with spherical scatterers, we assume spherical coordinates centered at the sphere, with r

denoting the radial distance and θ, φ denoting the polar and azimuthal angles, respectively. The

variable a represents the radius of the sphere. The mass density and Lamé constants of the host

medium are represented by ρ+, λ+ and µ+, respectively, and those of the scatterer are represented

by ρ−, λ− and µ−, respectively.

6.4.1 Condition Number of BEM Matrix

Consider a spherical scatterer embedded in a medium with ρ+ = 1 kg/m3, λ+ = 1 N/m2 and

µ+ = 4 N/m2. The corresponding Poisson’s ratio is ν = 0.1. For both hard and soft scatterers,
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Table 6.2: Eigenfrequencies for traction-free boundary condition.

Class 1
Class 2

ν = 0.1 ν = 0.25

ksa n q ksa n q ksa n q

2.5011326204 2 1 2.6152347452 2 1 2.6398692779 2 1

3.8646997782 3 1 3.0737426518 1 1 3.4245297320 1 1

5.0946156324 4 1 3.3977140284 0 1 3.9163370211 3 1

5.7634591969 1 1 3.8360119016 3 1 4.4399982124 0 1

6.2657678453 5 1 4.4129182959 2 2 4.8652728499 2 2

7.1360087922 2 2 4.8746628215 4 1 5.0093128642 4 1

7.4035969273 6 1 5.8511419592 5 1 6.0326988865 5 1

8.4449220200 3 2 5.8950839279 1 2 6.4543692537 3 2

8.5198681240 7 1 5.9597389993 3 2 6.7712913674 1 2

9.0950113305 1 2 6.7999936321 6 1 7.0229729764 6 1

9.6209990706 8 1 7.5373408953 1 3 7.7452144006 1 3

9.7125043954 4 2 7.5474590658 4 2 7.9948299123 7 1

10.5146010554 2 3 7.6339863287 2 3 8.0614966838 4 2

10.7108802591 9 1 7.7340204822 7 1 8.3291954591 2 3

10.9506107192 5 2 8.6590055204 8 1 8.9552528042 8 1

11.7920513847 10 1 8.9699858306 0 2 9.6357585373 5 2

11.8817466328 3 3 9.1068642770 3 3 9.7049056999 3 3

12.1664025691 6 2 9.1231792165 5 2 9.7801634603 2 4

12.3229409706 1 3 9.1699304284 2 4 9.9079944498 9 1

12.8662640580 11 1 9.5779666312 9 1 10.4939244112 0 2
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Figure 6.1: Condition number of BEM matrix for the CBIE formulation and rigid spherical scat-

terer. Vertical lines mark the positions of Class 1 and Class 2 eigenfrequencies of a rigid sphere.
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Figure 6.2: Condition number of BEM matrix for the CBIE formulation and soft spherical scatterer.

Vertical lines mark the positions of Class 1 and Class 2 eigenfrequencies of a rigid sphere.
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BEM matrices corresponding to CBIE, HBIE and CFIE formulations are obtained over a range of

frequencies. Figures 6.1 and 6.2 show the condition number of the CBIE matrix as function of the

the frequency for hard and soft scatterers, respectively. The eigenfrequencies of a rigid sphere are

also shown for reference. The frequency sweep is performed at 401 points in the displayed range.

As expected, the condition number increases near the eigenfrequencies. The BEM matrices are

obtained with 80 second-order mesh elements with Rule-22 discretization. Because of discretization

error, the numerical eigenfrequencies lie slightly away from the theoretical ones, although this

discrepancy is unnoticeable in the foregoing cases. The number of mesh elements is set such that

all the eigenfrequencies are resolved without any noticeable error.

The condition numbers for the HBIE formulation are shown in Figures 6.3 and 6.4. The fictitious

eigenfrequencies coincide with the eigenfrequencies of traction-free sphere. In the soft scatterer case,

the number of mesh elements is increased to 320 for ksa > 4.83 because the discretization error

for 80 elements was large beyond this frequency. Unlike the foregoing cases, Figure 6.5 shows that

there are no eigenfrequencies in the CFIE formulation with coupling coefficient β = i.

6.4.2 Scattering Amplitude

We will now consider scattering amplitude solutions for the foregoing spherical scatterer prob-

lems. Figures 6.6 and 6.7 show the longitudinal wave scattering amplitude obtained by solving

the CBIE formulation for soft and rigid scatterer cases, respectively. The exact analytical solution

computed using the separtion of variables technique [13, §10.6.2] is used as reference. In the rigid

scatterer case, we observe that scattering amplitude exhibits sharp peaks at Class 2 eigenfrequen-

cies. However, no such peaks are observed in the scattering amplitude in the soft scatterer case.

This phenomena is similar to that observed for the electric field integral equation (EFIE) for elec-

tromagnetic scattering, where the resonant surface currents do not radiate away from the scatterer

[192]. Therefore, although the surface fields are in error, the radiated fields still match the exact

solution.
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Figure 6.3: Condition number of BEM matrix for the HBIE formulation and rigid spherical scat-

terer. Vertical lines mark the positions of Class 1 and Class 2 eigenfrequencies of a traction-free

sphere.
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Figure 6.4: Condition number of BEM matrix for the HBIE formulation and soft spherical scatterer.

Vertical lines mark the positions of Class 1 and Class 2 eigenfrequencies of a traction-free sphere.
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Figure 6.5: Condition number of BEM matrix for the CFIE formulation (β = i) in case of both

soft and rigid spherical scatterers.
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The scattering amplitudes computed using the HBIE formulation are shown in Figures 6.8 and

6.9. The rigid scatterer case exhibits large errors whereas the soft scatterer case has very small

error near some of the eigenfrequencies. This indicates that for the HBIE formulation, the presence

of eigenfrequencies may not be problematic since their effect on the accuracy of the scattering

amplitude solution occurs in a very narrow-band centered at the eigenfrequencies. Recall that for

the soft scatterer case, 320 mesh elements are used for ksa > 4.83 whereas 80 mesh elements are

used for ksa < 4.83. The discontinuity around ksa = 4.83 is due to the use of different meshes.

The solution for ksa < 4.83 has a higher error because of the use of a coarser mesh. The scattering

amplitudes obtained with the CFIE formulation (β = i) are shown in Figures 6.10 and 6.11. No

peaks in the scattering amplitude are observed because of the absence of eigenfrequencies.

Next, we consider a spherical void problem proposed in [139] for testing the CFIE formulation.

The host material properties are: ρ+ = 1 kg/m3, λ+ = 2 N/m2 and µ+ = 1 N/m2. This scattering

problem is solved using the CBIE, HBIE and CFIE (β = i) formulations. In all cases, Rule-22

discretization is applied in the BEM, with 80 mesh elements. In [139], the frequency of the incident

wave is set to 1 Hz, which coincides with a Class 2 eigenfrequency of a rigid sphere. To account for

discretization error in the location of the irregular frequency, we calculated the condition number

of the BEM matrix using CBIE formulation at several frequencies close to 1 Hz and selected the

frequency that maximized the condition number. Therefore, the frequency is set to 1.00074 Hz. The

magnitude of radial dispkacement at r = 5a is shown as function of the polar angle in Figure 6.12.

Since the simulation frequency coincides with an irregular frequency of the CBIE formulation, we

observe a large error in the corresponding solution. On the other hand, both HBIE and CFIE

formulations lead to small errors, as also indicated by the relative errors in Figure 6.13. The

relative error in this figure is defined as |ur − uref|/maxθ |uref|, where uref is the reference solution.

To further confirm these results, we modify the host material properties to ρ+ = 1 kg/m3,

λ+ = 1 N/m2 and µ+ = 4 N/m2 and compute the longitudinal wave scattering amplitude at the

first four eigenfrequencies (of a rigid sphere). These frequencies correspond to kpa = 2.4746, 2.9979,

3.5977, 3.8453. The first and the third eigenfrequencies belong to Class 2, whereas the other two
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Figure 6.6: Magnitude of longitudinal wave scattering amplitude for the rigid spherical scatterer

computed using the CBIE formulation.
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Figure 6.7: Magnitude of longitudinal wave scattering amplitude for the soft spherical scatterer

computed using the CBIE formulation.
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Figure 6.8: Magnitude of longitudinal wave scattering amplitude for the rigid spherical scatterer

computed using the HBIE formulation.
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Figure 6.9: Magnitude of longitudinal wave scattering amplitude for the soft spherical scatterer

computed using the HBIE formulation.
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Figure 6.10: Magnitude of longitudinal wave scattering amplitude for the rigid spherical scatterer

computed using the CFIE formulation (β = i).
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Figure 6.11: Magnitude of longitudinal wave scattering amplitude for the soft spherical scatterer

computed using the CFIE formulation (β = i).



www.manaraa.com

206

0 30 60 90 120 150 180

  (Degrees)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

M
ag

n
it

u
d

e 
o

f 
ra

d
ia

l 
d

is
p

la
ce

m
en

t

Exact

CFIE

CBIE

HBIE

Figure 6.12: Magnitude of scattered radial displacement at r = 5a for a soft spherical scatterer

(ksa = 2π). Coupling coefficient in CFIE formulation is β = i.
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Figure 6.13: Relative error in scattered radial displacement at r = 5a for a soft spherical scatterer

(ksa = 2π). Coupling coefficient in CFIE formulation is β = i.
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Figure 6.14: Longitudinal wave scattering amplitude for a spherical cavity at the first four Class 2

eigenfrequencies.

belong to Class 1. Accordingly, we find in Figure 6.14 that the solution calculated using the CBIE

formulation is in error at the first and the third eigenfrequencies. On the other hand, the CFIE

(β = i) results shown in Figure 6.15 are accurate.

6.4.3 Convergence Rate of Iterative Solution

Although the coupling coefficient β = i makes the CFIE well-conditioned, it may not be an

optimal choice for reducing the number of iterations required when the BEM linear system is solved

using an iterative method. To illustrate this, we consider the spherical cavity problem mentioned

above (Figure 6.12) with ρ+ = 1 kg/m3, λ+ = 2 N/m2 and µ+ = 1 N/m2. However, instead
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Figure 6.15: Longitudinal wave scattering amplitude for spherical cavity at the first four Class 2

eigenfrequencies. Coupling coefficient in CFIE formulation is β = i.
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Table 6.3: Comparison of number of iterations and relative errors of different BIE formulations for

scattering from a spherical cavity.

ksa = 2.00148π ksa = 16π

Iterations Rel. err. Iterations Rel. err.

CBIE 27 0.204 > 1000 –

HBIE 255 4.4×10−3 > 1000 –

CFIE (β = i) 205 4.1×10−3 > 1000 –

CFIE (β = −1− i) 13 4.2×10−3 84 1.45× 10−2

of solving the BEM linear system by direct inversion, we obtain the solution using the GMRES

method with a block Jacobi preconditioner [189, §3.2]. The residual error is set to 10−4. Table 6.3

shows the number of iterations and the relative error, which is defined as ||An −Aref||2/||Aref||2,

where An is a vector that stores the longitudinal wave scattering amplitudes for different values of

θ and Aref is the reference solution.

Although the CFIE converges faster than the HBIE and BM-BIE formulations, it has a large

relative error because of ill-conditioning. The CFIE formulation with β = −1− i converges in the

least number of iterations and has slightly higher error than the BM-BIE formulation. We find

similar observations when the frequency is increased to ksa = 16π, which corresponds to another

Class 2 eigenfrequency. The number of mesh elements is 1280, and MLFMM with L = 4 levels is

applied. Only the CFIE formulation with β = −1 − i converges to the required tolerance. Other

formulations do not converge even after 1000 iterations. This suggests a need to study the affect

of coupling parameter on the convergence rate. The residual errors after 1000 iterations for the

CBIE, HBIE and BM-BIE formulations are 0.014, 0.022 and 0.357, respectively. The corresponding

relative errors are 0.215, 2.1× 10−2 and 0.725, respectively.

6.4.4 Pulse-echo from FBH

We revisit the FBH benchmark problem analysed in Section 2.3.1.2. We mentioned that the

pulse-echo simulated using the BEM matches the measurement more closely if the plane-wave

approximation is not used. Since the variation of the integral in (2.8) (I(ω)) as a function of
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frequency is not as smooth as that of the scattering amplitude in (2.14), the frequency sweep for

the large-flaw model needs more points than the one with the small-flaw model. This increases the

chances of simulating the model close to a fictitious eigenfrequency. Also, although the scattering

amplitude of the FBH may not be effected by some eigenfrequencies, as in the case of the spherical

scatterer at Class 1 eigenfrequencies, the same may not be true for the integral I(ω). Therefore,

BEM results are more prone to the eigenfrequency problem when the large flaw model is used.

Indeed, as Figure 6.16 demonstrates, the pulse-echo simulated using the CBIE and the large

flaw model shows artifacts in the form of large ripples that exist outside the time-range of the

measured pulse-echo, unlike the same result in case of the small-flaw model, where this artifact is

less pronounced. Figure 6.17 shows the normalized magnitude of I(ω). The ripple-like artifacts in

the pulse-echo signal are due to the sharp peaks in the CBIE response in this figure. The FBH

model is also simulated using the CFIE formulation with β = −(1 + i). Unlike the CBIE case,

the frequency domain response of the CFIE formulation exhibits no peaks. Therefore, we find no

artifacts in the corresponding pulse-echo result. Also, as expected, this result matches the measured

pulse-echo more closely than the one generated using the small flaw model (see Figure 2.12) since

it does not include the plane-wave approximation.

6.5 Conclusions

This chapter illustrates the fictitious eigenfrequency problem in the conventional and hyper-

singular BIE formulations. Scattering amplitudes calculated with these formulations exhibit sharp

peaks at some eigenfrequencies. Similar to the internal resonance frequency phenomena in the EFIE

for electromagnetics, radiated fields are unaffected by resonant surface fields at some eigenfrequen-

cies for both HBIE and CBIE formulations. Particularly, longitudinal wave scattering amplitudes

can be calculated accurately for rigid spherical scatterers in case of CBIE and soft spherical scatter-

ers in case of HBIE, despite the presence of eigenfrequencies. However, for other types of scatterers,

the longitudinal wave scattering amplitudes may be in error, particularly at high frequencies, where

the density of eigenfrequencies is relatively high. The CFIE is proposed as an alternative well-
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planar transducer. Coupling coefficient in CFIE formulation is β = −(1 + i).
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conditioned formulation for modeling ultrasonic scattering problems. Numerical examples indicate

that the CFIE formulation is free from the ficititious eigenfrequency problem when the coupling

coefficient β is set to i. However, the convergence rate in iterative solution process is sensitive to

the choice of the coupling coefficient, and a further analysis is required to study this effect.
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CHAPTER 7. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

State-of-the-art ultrasonic NDE modeling involves the use of a composite modeling technique

wherein different processes in the system are modeled separately and the system output response

is synthesized by combining the outputs of sub-models using analytical techniques. This allows the

use of efficient approximations and empirical models to treat processes such as transduction, wave

propagation, etc., which in turn makes the simulation effort tractable. In view of computational

efficiency, UNDE simulation packages use full-wave scattering models only for simple defect shapes

that admit exact analytical solutions and handle more complex defects using approximation models,

with the most popular one being the Kirchhoff approximation (KA). It is well-known that the KA

does not capture some salient processes underlying ultrasonic scattering, such as creeping wave

phenomena and multiple reflections. This thesis advances the BEM to address the lack of efficient

high-fidelity (full-wave) solvers for ultrasonic scattering in UNDE applications. To inform the

judicious use of BEM (or full-wave solvers, in general), a comprehensive study is conducted in

Chapter 2 using immersion testing benchmarks. Small inclusion-type defects and edge-diffractions

at angles of incidence greater than 45◦ were identified as the cases that showed the largest differences

between KA and full-wave model predictions, with the predicted pulse-echo amplitudes differing

by around 20 percentage points in the latter case.

This thesis proposes the use of three crucial implementation choices, namely, high-order dis-

cretization, multilevel fast multipole algorithm (MLFMA) and the direct combined-field integral

equation (CFIE), as a means to reduce the computational costs of BEM. Chapter 3 compared the

total simulation times and output errors of BEMs of different orders of discretizations applied to

the conventional boundary integral equation (CBIE) and demonstrated that the use of second-order

geometry and field discretizations leads to faster simulations (over first and zeroth order) due to

reduction in the number of degrees of freedom required for converging to a given level of error. A
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high-order BEM for the CFIE formulation was developed in Chapter 4. A key contribution from

this chapter is the singularity subtraction method applied for handling near-singular integrals. The

high-order BEM is validated using analytical results for circular traction-free cracks and spherical

scatterers. Diagonal-form expansions of the CFIE kernels are given in Chapter 5. Since the un-

regularized HBIE and CBIE kernels share their radiation patterns, the compute-time and memory

overheads (due to the use of combined-field formulation) in evaluating the far-field contributions in

MLFMA are minimized. Chapter 6 analyzes the fictitious eigenfrequency problem associated with

the CBIE and HBIE formulations. The CFIE formulation is free from this artifact for a proper

choice of the coupling constant. An example of a practical UNDE test reveals that the eigenfre-

quency problem in the CBIE may be more pronounced with the use of large flaw scattering models

as opposed to small flaw models, which provide scattering amplitudes as outputs.

Although the CFIE formulation leads to well-conditioned linear systems that are more suitable

for iterative solution methods than those from the CBIE and HBIE formulations, it still requires

a relatively large number of iterations at high frequencies. Therefore, efficient preconditioners

for combined-field formulations need to be explored to further reduce the iterative solution times

[182–184]. The most time-consuming part of the BEM is the matrix filling process. For near-

singular integrals arising from strongly singular kernels, singularity cancellation schemes have been

developed [164, 196] which may be more efficient than the singularity subtraction procedures applied

here. A performance comparison between the two methods will be helpful. Also, the development

of efficient singularity cancellation schemes for near-hypersingular integrals will probably have the

highest impact in reducing the matrix-filling times. Since surface fields on crack-like defects exhibit

singular behaviour, the performance of BEM for such defects can be improved by using non-

uniform boundary elements. However, non-uniform discretizations lead to highly ill-conditioned

linear systems. Therefore, preconditioners for linear systems resulting from such discretizations

should be considered [197].

On the application side, meta-modeling based model-assisted probability of detection (MAPOD)

approaches have seen promising developments recently [198, 199]. Multifidelity metamodeling tech-
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niques fuse data from a high-fidelity full-wave solver with low-fidelity (approximation) solvers to

provide efficient and accurate surrogates of the full-wave solver [200]. In this way, MAPOD-

approaches based on the BEM can be realized with a relatively smaller number of evaluations

of the BEM model than what is possible by direct application. Also, it is worth noting that the

computational cost of near-field matrix filling is amortized by the fact that changes in parameters

related to the transducer orientation, location, etc. only change the incident field vector in the

linear system. Therefore, the near-field matrix does not have to be re-evaluated for parametric

variations of such variables.
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[58] A. Boström and P. Bövik, “Ultrasonic scattering by a side-drilled hole,” International Journal
of Solids and Structures, vol. 40, no. 13-14, pp. 3493–3505, 2003.

[59] A. Boström and G. Wickham, “On the boundary conditions for ultrasonic transmission by
partially closed cracks,” Journal of Nondestructive Evaluation, vol. 10, no. 4, pp. 139–149,
1991.

[60] A. Boström and A. S. Eriksson, “Scattering by two penny-shaped cracks with spring boundary
conditions,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical
Sciences, vol. 443, no. 1917, pp. 183–201, 1993.

[61] J. Westlund and A. Boström, “A hybrid T matrix/boundary element method for elastic wave
scattering from a defect near a non-planar surface,” Journal of Nondestructive Evaluation,
vol. 31, no. 2, pp. 148–156, 2012.

[62] P. Martin, “On connections between boundary integral equations and T-matrix methods,”
Engineering Analysis with Boundary Elements, vol. 27, no. 7, pp. 771–777, 2003.



www.manaraa.com

221

[63] R. Raillon, S. Chatillon, S. Mahaut, M. Spies, D. O. Thompson, and D. E. Chimenti, “Results
of the 2007 UT modeling benchmark using two semi-analytical beam propagation and flaw
scattering model,” in Review of Progress in Quantitative Nondestructive Evaluation (D. O.
Thompson and D. E. Chimenti, eds.), vol. 975, pp. 1759–1766, American Institute of Physics,
Melville, NY, 2008.

[64] M. Spies, “Semi-analytical elastic wave-field modeling applied to arbitrarily oriented or-
thotropic media,” The Journal of the Acoustical Society of America, vol. 110, no. 1, pp. 68–79,
2001.

[65] M. Spies, A. Dillhöfer, H. Rieder, and D. Dobrovolskij, “Real-time 3D-simulation tool for ul-
trasonic transducers used in aeroengine component inspections,” in 4th International Sympo-
sium on NDT in Aerospace 2012, Nov 13-14, Augsburg, Germany (AeroNDT 2012), vol. 2013-
02, NDT.net, 2013.

[66] M. Spies, “Kirchhoff evaluation of scattered elastic wavefields in anisotropic media,” The
Journal of the Acoustical Society of America, vol. 107, no. 5, pp. 2755–2759, 2000.

[67] M. Spies, “Ultrasonic field modeling for immersed components using Gaussian beam super-
position,” Ultrasonics, vol. 46, no. 2, pp. 138–147, 2007.

[68] M. Spies and W. Feist, “Application and validation of the Gaussian beam superposition tech-
nique to simulate the inspection of aero engine components,” in AIP Conference Proceedings,
vol. 894, pp. 886–893, AIP, 2007.

[69] D. Placko and T. Kundu, “Theoretical study of magnetic and ultrasonic sensors: dependence
of magnetic potential and acoustic pressure on the sensor geometry,” in Advanced Nonde-
structive Evaluation for Structural and Biological Health Monitoring, vol. 4335, pp. 52–62,
International Society for Optics and Photonics, 2001.

[70] D. Placko and T. Kundu, Basic Theory of Distributed Point Source Method (DPSM) and Its
Application to Some Simple Problems, ch. 1, pp. 1–58. John Wiley & Sons, Ltd, 2006.

[71] S. Das, S. Banerjee, and T. Kundu, “Elastic wave scattering in a solid half-space with a
circular cylindrical hole using the distributed point source method,” International Journal of
Solids and Structures, vol. 45, no. 16, pp. 4498–4508, 2008.

[72] A. Shelke, S. Das, and T. Kundu, “Distributed point source method for modeling scattered
ultrasonic fields in the presence of an elliptical cavity,” Structural Health Monitoring, vol. 9,
no. 6, pp. 527–539, 2010.

[73] D. Placko, T. Yanagita, E. K. Rahani, and T. Kundu, “Mesh-free modeling of the interac-
tion between a point-focused acoustic lens and a cavity,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 57, no. 6, pp. 1396–1404, 2010.



www.manaraa.com

222

[74] T. Hajzargarbashi, E. K. Rahani, and T. Kundu, “Scattering of focused ultrasonic beams by
two spherical cavities in close proximity,” IEEE Transactions on Ultrasonics, Ferroelectrics,
and Frequency Control, vol. 58, no. 8, pp. 1619–1627, 2011.

[75] J. Reddy, An introduction to the finite element method, vol. 1221. McGraw-Hill New York,
USA, 2004.

[76] S. R. Wu, “A priori error estimates for explicit finite element for linear elasto-dynamics by
galerkin method and central difference method,” Computer Methods in Applied Mechanics
and Engineering, vol. 192, no. 51-52, pp. 5329–5353, 2003.

[77] S. R. Wu, “Lumped mass matrix in explicit finite element method for transient dynamics
of elasticity,” Computer Methods in Applied Mechanics and Engineering, vol. 195, no. 44-47,
pp. 5983–5994, 2006.

[78] N. Murphy and C. Sovinec, “An analysis of mass matrix lumping in NIMROD,” tech. rep.,
UW-CPTC 05-1, 2005.

[79] P. Huthwaite, “Accelerated finite element elastodynamic simulations using the GPU,” Journal
of Computational Physics, vol. 257, pp. 687–707, 2014.

[80] G. L. Wojcik, D. Vaughan, N. Abboud, and J. J. Mould, “Electromechanical modeling using
explicit time-domain finite elements,” in 1993 Proceedings IEEE Ultrasonics Symposium,
pp. 1107–1112, IEEE, 1993.

[81] G. Wojcik, D. Vaughan, V. Murray, and J. J. Mould, “Time-domain modeling of composite
arrays for underwater imaging,” in 1994 Proceedings of IEEE Ultrasonics Symposium, vol. 2,
pp. 1027–1032, IEEE, 1994.

[82] Dassault Systemes SE, Abaqus Theory Guide, 2016.

[83] Dassault Systemes SE, Abaqus Analysis User Guide, 2016.

[84] A. Imperiale and E. Demaldent, “A macro-element strategy based upon spectral finite ele-
ments and mortar elements for transient wave propagation modeling. Application to ultra-
sonic testing of laminate composite materials,” International Journal for Numerical Methods
in Engineering, vol. 119, no. 10, pp. 964–990, 2019.

[85] A. Imperiale, S. Chatillon, P. Calmon, N. Leymarie, S. Imperiale, and E. Demaldent, “UT
simulation of embedded parametric defects using a hybrid model based upon spectral finite
element and domain decomposition methods,” in 19th World Conference on Non-Destructive
Testing, vol. 1, pp. 2184–2189, 2016.



www.manaraa.com

223

[86] A. Imperiale, E. Demaldent, N. Leymarie, S. Chatillon, and P. Calmon, “Smart numerical
tools for the modelling of ultrasonic testing on curved composite structures,” in AIP Confer-
ence Proceedings, vol. 2102, p. 130004, AIP Publishing, 2019.

[87] E. Becache, P. Joly, and C. Tsogka, “Fictitious domains, mixed finite elements and perfectly
matched layers for 2-D elastic wave propagation,” Journal of Computational Acoustics, vol. 9,
no. 03, pp. 1175–1201, 2001.

[88] V. Dolean, P. Jolivet, and F. Nataf, An introduction to domain decomposition methods: al-
gorithms, theory, and parallel implementation, vol. 144. SIAM, 2015.

[89] COMSOL Inc., COMSOL Multiphysics Reference Manual, 2018.

[90] J.-P. Weiss, “Using the domain decomposition solver in COMSOL multiphysics.”
https://www.comsol.com/blogs/using-the-domain-decomposition-solver-in-comsol-
multiphysics/, 2016. [Online; accessed 01-October-2019].

[91] A. Van Pamel, C. R. Brett, P. Huthwaite, and M. J. Lowe, “Finite element modelling of
elastic wave scattering within a polycrystalline material in two and three dimensions,” The
Journal of the Acoustical Society of America, vol. 138, no. 4, pp. 2326–2336, 2015.

[92] A. Van Pamel, G. Sha, S. Rokhlin, and M. Lowe, “Finite-element modelling of elastic wave
propagation and scattering within heterogeneous media,” Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, vol. 473, no. 2197, p. 20160738, 2017.

[93] J. Dobson, A. Tweedie, G. Harvey, R. OLeary, A. Mulholland, K. Tant, and A. Gachagan,
“Finite element analysis simulations for ultrasonic array NDE inspections,” in AIP Conference
Proceedings, vol. 1706, p. 040005, AIP Publishing, 2016.

[94] J. Zhang, B. W. Drinkwater, and P. D. Wilcox, “Defect characterization using an ultra-
sonic array to measure the scattering coefficient matrix,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 55, no. 10, pp. 2254–2265, 2008.

[95] S. Bannouf, D. Elbaz, B. Chassignole, N. Leymarie, and P. Recolin, “Validation of simulation
tools for ultrasonic inspection of austenitic welds in the framework of the MOSAICS project,”
in Proceedings of 11th European Conference on Non-Destructive Testing (ECNDT 2014),
2014.

[96] H. Taheri, L. Koester, T. Bigelow, and L. J. Bond, “Finite element simulation and experimen-
tal verification of ultrasonic non-destructive inspection of defects in additively manufactured
materials,” in AIP Conference Proceedings, vol. 1949, p. 020011, AIP Publishing, 2018.

https://www.comsol.com/blogs/using-the-domain-decomposition-solver-in-comsol-multiphysics/
https://www.comsol.com/blogs/using-the-domain-decomposition-solver-in-comsol-multiphysics/


www.manaraa.com

224

[97] C. Boller, D. R. Mahapatra, R. Sridaran Venkat, N. B. Ravi, N. Chakraborty, R. Shivamurthy,
and K. M. Simon, “Integration of non-destructive evaluation-based ultrasonic simulation: A
means for simulation in structural health monitoring,” Structural Health Monitoring, vol. 16,
no. 5, pp. 611–629, 2017.

[98] Y. Liu, S. Mukherjee, N. Nishimura, M. Schanz, W. Ye, A. Sutradhar, E. Pan, N. Dumont,
A. Frangi, and A. Saez, “Recent advances and emerging applications of the boundary element
method,” Applied Mechanics Reviews, vol. 64, no. 3, p. 030802, 2011.

[99] D. E. Beskos, “Boundary element methods in dynamic analysis,” Applied Mechanics Reviews,
vol. 40, no. 1, pp. 1–23, 1987.

[100] D. E. Beskos, “Boundary element methods in dynamic analysis: Part II (1986-1996),” Applied
Mechanics Reviews, vol. 50, no. 3, pp. 149–197, 1997.

[101] Y. Niwa, S. Hirose, and M. Kitahara, “Application of the boundary integral equation (BIE)
method to transient response analysis of inclusions in a half space,” Wave Motion, vol. 8,
no. 1, pp. 77–91, 1986.

[102] D. Budreck and J. Achenbach, “Scattering from three-dimensional planar cracks by the
boundary integral equation method,” Journal of Applied Mechanics, vol. 55, no. 2, pp. 405–
412, 1988.

[103] P. Schafbuch, F. Rizzo, and R. Thompson, “Boundary element method solutions for elastic
wave scattering in 3D,” International Journal for Numerical Methods in Engineering, vol. 36,
no. 3, pp. 437–455, 1993.

[104] Y. Cho and J. L. Rose, “A boundary element solution for a mode conversion study on the
edge reflection of lamb waves,” The Journal of the Acoustical Society of America, vol. 99,
no. 4, pp. 2097–2109, 1996.

[105] Y. Cho and J. L. Rose, “An elastodynamic hybrid boundary element study for elastic guided
wave interactions with a surface breaking defect,” International Journal of Solids and Struc-
tures, vol. 37, no. 30, pp. 4103–4124, 2000.

[106] J. Rose, S. Pelts, and Y. Cho, “Modeling for flaw sizing potential with guided waves,” Journal
of Nondestructive Evaluation, vol. 19, no. 2, pp. 55–66, 2000.

[107] J. L. Rose et al., “Boundary element modeling for defect characterization potential in a wave
guide,” International Journal of Solids and Structures, vol. 40, no. 11, pp. 2645–2658, 2003.

[108] G. Rus, S.-C. Wooh, and R. Gallego, “QNDE using complete frequency information from
ultrasound,” WIT Transactions on Modelling and Simulation, vol. 37, 2004.



www.manaraa.com

225

[109] G. Rus, S.-Y. Lee, and R. Gallego, “Defect identification in laminated composite structures
by BEM from incomplete static data,” International Journal of Solids and Structures, vol. 42,
no. 5-6, pp. 1743–1758, 2005.

[110] T. Maruyama, T. Saitoh, and S. Hirose, “Simulation for air-coupled ultrasound testing using
time-domain BEM,” in AIP Conference Proceedings, vol. 1581, pp. 550–555, AIP, 2014.

[111] S. Chaillat, M. Bonnet, and J.-F. Semblat, “A multi-level fast multipole BEM for 3-d elastody-
namics in the frequency domain,” Computer Methods in Applied Mechanics and Engineering,
vol. 197, no. 49-50, pp. 4233–4249, 2008.

[112] F. Bu, J. Lin, and F. Reitich, “A fast and high-order method for the three-dimensional elastic
wave scattering problem,” Journal of Computational Physics, vol. 258, pp. 856–870, 2014.
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APPENDIX A. KIRCHHOFF APPROXIMATION FORMULAS FOR

SPHERICAL SCATTERER

With reference to Figure A.1, define the following quantities:

ẽβ = eβi , (A.1a)

eβ = eβs , (A.1b)

ėβ = eβr , (A.1c)

d̃
β

= dβi , (A.1d)

dβ = dβs , (A.1e)

ḋ
β

= dβr (A.1f)

for β = P, SV, SH. The scattering amplitude of longitudinal wave incidence is [13, §10.4.1]

AP ;β
n (ẽβ, eP ) =

iωePn e
P
l Clkpj

4πρc2
1

∫
Slit

DP ;β
pjk e

(ikβ ẽ
β−ik1eP )·xsdS(xs), (A.2)

where

DP ;β
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d̃βp ẽ
β
j nk
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+
ePk d̃

β
j np

cp
+

∑
m=P,SV,SH

Rm;β
12

(
ḋmp ė

m
j nk

cm
+
ePk ḋ

m
j np

cp

)
. (A.3)

Here, Rm;β
12 represents the reflection coefficient calculated by assuming that the scattering surface

is an infinite plane that coincides with the tangent plane at the point where the incident ray strikes

the scatterer. For a linear elastic solid with Lamé parameters λ and µ, we have

Clkpj = λδlkδpj + µ(δlpδkj + δljδkp). (A.4)

Therefore,

AP ;P
n (ẽP , eP ) =

−iωePn ePl [λδlkδpj + µ(δlpδkj + δljδkp)]

4πρc2
1

∫
Slit

DP ;P
pjk e

(ikP ẽ
P−ik1eP )·xsdS(xs) (A.5)
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Figure A.1: KA for scattering from a sphere.
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12 nl + ePl cos θRP ;P
12

)
+
RSV ;P

12 ePl sin θSV

cp

=
1

cp

[
nl

(
1 +RP ;P

12

)
− ePl cos θ

(
1−RP ;P

12

)
+RSV ;P

12 ePl sin θSV
]
, (A.8)

DP ;P
lkk =

1

cp

(
−ẽPl cos θ − nl +RP ;P

12 ėl cos θ +RP ;P
12 nl cos 2θ

)
+RSV ;P

12

(
ḋSVl cos θSV

cs
+
nl sin(θ + θSV )

cp

)

=
1

cp

[
−ẽPl cos θ − nl

(
1−RP ;P

12 cos 2θ
)

+RP ;P
12 ėl cos θ +RSV ;P

12 nl sin(θ + θSV )
]

+
RSV ;P

12 ḋSVl cos θSV

cs
, (A.9)

DP ;P
klk =

RP ;P
12

cp

(
ėl cos θ + ėl cos θ

)
+RSV ;P

12

(
ėSVl sin θSV

cs
+
ḋSVl cos θ

cp

)

=
2RP ;P

12 ėl cos θ

cp
+RSV ;P

12

(
ėSVl sin θSV

cs
+
ḋSVl cos θ

cp

)
. (A.10)
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APPENDIX B. EVALUATION OF LIMITS IN THE DERIVATIONS OF

INTEGRAL REPRESENTATION AND CBIE

Section B.1 contains a derivation of some limits in Equation (4.22). Section B.2 discusses

the convergence of CPV integrals encountered in Section 4.2.6. Section B.3 discusses contintuity

requirements of the displacement fields in the HBIE formulation. Section B.4 proves the limit

in Equation (4.63b), which appears in the derivation of the CBIE via the limit-to-the-boundary

approach (Section 4.2.9).

B.1 Limits in the Derivation of Integral Representation

With reference to Figure 4.1 and Equation (4.22), we are interested in the following limits:

I1 = lim
ε→0

∫
Sε

u(x) ·
[
n̂(x) ·Σ(1)(x,x′)

]
dS(x), (B.1)

I2 = lim
ε→0

∫
Sε

t(x) ·G(x,x′) dS(x). (B.2)

To derive these limits, we will use the expressions in Equations (4.18) and (4.24) for kernels G(x,x′)

and Σ(1)(x,x′), respectively, noting that the following limits hold true [30, §4.1] as R→ 0:

C =
1

2
(k2
s − k2

p)R
2 +O(R4), (B.3a)

D =
1

2
(k2
s + k2

p)R
2 +O(R3), (B.3b)

F =
3

2
(k2
p − k2

s)R
2 +O(R4), (B.3c)

λψp + 2µC = µk2
pR

2 +O(R4), (B.3d)

ψs + 2C = −k2
pR

2 +O(R4). (B.3e)

According to the above limits, the vector magnitude of the integrand of I2 varies as 1/R as ε goes

to zero. Since dS(x) varies as R2, the integral I2 evaluates to zero.
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To evaluate I1, note that n̂(x) = R̂ for x ∈ Sε. Using the (4.24) and (B.3), we have

I1 = − lim
ε→0

∫
Sε

u(x) ·

µk2
pR̂R̂− µk2

p

(
R̂R̂ + I

)
+ 3µ(k2

p − k2
s)R̂R̂

4πρω2R2

 dS(x), (B.4a)

= lim
ε→0

∫
Sε

u(x) ·
[
k2
pI− 3(k2

p − k2
s)R̂R̂

4πρω2

]
µ sin θ dθdφ, (B.4b)

where we assume polar coordinates centered at x′ in the last step. Integral I1 further reduces to

I1 = lim
ε→0

∫
Sε

k2
pu(x)− 3(k2

p − k2
s)
(
R̂ · u(x)

)
R̂

4πρω2

µ sin θ dθdφ, (B.5)

Assuming that u(x) is Hölder continuous in a neighborhood of x, the limits of the two terms in

the integrand can be shown to exist independently, as detailed below. Consider the first term:

lim
ε→0

∫
Sε

µk2
p sin θ

4πρω2
u(x) dθdφ = lim

ε→0

∫
Sε

µk2
p sin θ

4πρω2

[
u(x)− u(x′) + u(x′)

]
dθdφ. (B.6)

By the assumption of Hölder continuity, there exist C, α ∈ R (C, α > 0) such that |u(x)−u(x′)| <

CRα. Therefore,

lim
ε→0

∫
Sε

µk2
p sin θ

4πρω2

[
u(x)− u(x′)

]
dθdφ = 0, (B.7)

and (B.6) reduces to

lim
ε→0

∫
Sε

µk2
p sin θ

4πρω2
u(x) dθdφ = lim

ε→0

∫
Sε

µk2
p sin θ

4πρω2
u(x′) dθdφ =

µk2
p sin θ

ρω2
u(x′). (B.8)

Similarly,

lim
ε→0

∫
Sε

−3µ(k2
p − k2

s) sin θ

4πρω2
R̂R̂ · u(x) dθdφ = lim

ε→0

∫
Sε

−3µ(k2
p − k2

s) sin θ

4πρω2
R̂R̂ · u(x′) dθdφ. (B.9)

Writing R̂ and u(x′) as their components in the underlying Cartesian coordinate basis, we have

sin θR̂R̂ · u(x′) = sin θ


sin2 θ cos2 φ sin2 θ sinφ cosφ cos θ sin θ cosφ

sin2 θ cosφ sinφ sin2 θ sin2 φ cos θ sin θ sinφ

sin θ cos θ cosφ sin θ cos θ sinφ cos2 θ



u1(x′)â1

u2(x′)â2

u3(x′)â3

 (B.10)

Then, using the following identities ∫ 2π

0
sin t cos tdt = 0, (B.11a)
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∫ π

0
sin3 tdt =

4

3
, (B.11b)∫ π

0
sin t cos2 tdt =

2

3
, (B.11c)

∫ π

0
sin2 tdt =

π∫
0

cos2 tdt =
π

2
, (B.11d)

we can the right-hand side of (B.9) as follows:

lim
ε→0

∫
Sε

−3µ(k2
p − k2

s) sin θ

4πρω2
R̂R̂ · u(x′) dθdφ =

−3µ(k2
p − k2

s)

4πρω2

4π

3
u(x′) = −

µk2
p

ρω2
u(x′) + u(x′).

(B.12)

In the last step, we have used the fact that ρω2/µ = k2
s . From (B.8), (B.12) and (B.5), we get

I1 = u(x′).

B.2 Convergence of CPV Integrals

We prove the convergence of the following CPV integral:

I = −
∫
S

u(x′) ·
[
n̂′ ·Σ(1)

+ (x,x′)
]
dS(x′). (B.13)

We assume that the displacement field u(x′) is Hölder continuous. First, decompose the integration

domain into two parts: one including a very small neighborhood of x and another including the

rest of the surface S. The latter part is regular since its integration domain is away from the point

of singularity. To evaluate the former part, we can transform the integral into polar coordinates

defined on the tangent plane at x, with the origin coinciding with x.

Then, the integral can be evaluated in the form shown in Equations (4.117). Note that we need

to set the coefficient F−2(θ) to zero since the kernel in the above integral is not hypersingular.

With reference to this equation, we note that the integrand of I0 is regular if u(x′) is at least

Hölder continuous (see equations (C.7) and (C.8)). The integral I−1 is also convergent, as shown

in (4.119). This proves that all parts resulting from the decomposition of the integration domain,

as mentioned above, are convergent, and hence the CPV integral is convergent.
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B.3 Continuity Requirements of Displacement Field in HBIE

Recall that in the HBIE formulation, we construct a Laurent series of the hypersingular in-

tegrand to eliminate divergent terms. From Equation (C.14), we notice that this requires the

displacement field to have a continuous first derivative on the boundary S. Also, an argument

similar to the one in Section B.2 suggests that the displacement field needs to be at least C1,α

Hölder continuous for the integrand of I0 in (4.117) to be regular.

B.4 Jump Relation

We are interested in deriving the following limit:

lim
x→y

∫
S

u(x′) ·
[
n̂′ ·Σ(1)

+ (x,x′)
]
dS(x′) = −

∫
S

u(x′) ·
[
n̂′ ·Σ(1)

+ (y,x′)
]
dS(x′)− u(y)

2
. (B.14)

Let Σ
(α)
±s (x,x′) and G

(α)
±s (x,x′) (α = 1, 2) represent the fundamental solutions in the static case

(ω = 0). Using the expressions for the static fundamental solutions in [201], one can prove the

following lemma:

Lemma B.4.1 (Limiting form of static fundamental solution). As |x − x′| → 0, the static and

(respective) dynamic fundamental solutions converge to the same expressions.

Lemma B.4.2. Equations (4.38) and (4.39), which represent the CBIE formulation, and Equa-

tion (4.26), which represents the representation formula, hold true even if the dynamic fundamental

solutions are replaced with the static ones.

Proof. This result follows from the derivation of the CBIE formulation from Sections 4.2.1 through

Section 4.2.6 by setting the frequency ω = 0 and using Lemma B.4.1.

Lemma B.4.3 (Rigid translation is a static solution). A rigid translation given by the displacement

field u(x) = u0 for x ∈ R3, where u0 is a constant vector, is a solution of the elastostatic equations

of motion for a infinite elastic solid in the absence of body forces.
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Proof. From Equation (4.2), the equation of motion in the static case with no body forces is

∇ · τ(x, ω) = 0. (B.15)

When u(x) is constant for all x ∈ R3, the traction field vanishes. Thus, any rigid translation is a

solution of the equations of motion.

As a corollary, the foregoing result holds even when an elastic object is embedded in the solid

as long the displacement is continuous at their interface.

Lemma B.4.4 (Identities of static fundamental solution). Let S be the surface of an elastic object

embedded in an elastic solid. Let the volume occupied by the object excluding its surface be V−. The

volume outside the object is V+ = R3 \ (S ∪ V−). If u(x) is a constant (say u0) for x ∈ R3, then

∫
S

u0 ·
[
n̂′ ·Σ(1)

±s(x,x
′)
]
dS(x′) =


∓u0 if x ∈ V±

∓1
2u0 if x ∈ S

. (B.16)

Proof. From Lemmas B.4.2 and B.4.3, the fields corresponding to a rigid translation satisfy Equa-

tions (4.38) and (4.39) (CBIE formulation) if the fundamental solutions are replaced with their

static counterparts. Then, substitute u(x) = u0 and t(x) = 0, where u0 is a constant vector, into

these equations and replace the fundamental solutions with the static ones. This proves the lemma

partially. To prove the equations inside V+ and V−, we apply the representation formula (4.26) in

these volumes, again by replacing the dynamic fundamental solutions with the static ones. When

applying the representation formula in V+, we assume a sphere that bounds S and let its radius

go to infinity, as detailed in Section 4.2.6 (see Figure 4.5). The integral over Sr can be shown to

vanish as the radius of the sphere goes to infinity. This yields the required results.

Definition 1. Assume that an elastic object with closed surface S is embedded in a host material,

as in Lemma B.4.4. Let u(x) be a displacement field defined in x ∈ R3. Define the dyad L
(α)
± (x,x′)

and operator αL±S as follows:

Lα±(x,x′) := n̂(x′) ·Σ(α)
± (x,x′), (B.17)
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αL±Su(x) := −
∫
S

u(x′) · L(α)
± (x,x′) dS(x′) (B.18)

for x ∈ R3. For the points x /∈ S, the CPV integral reduces to a Riemann integral.

Theorem B.4.5 (Jump relation). Assume that for x ∈ S, there exists a neighborhood of x in

which u(x) is Hölder continuous. Let x0 be a point in S. Then,

lim
x∈V+→x0

1L+
Su(x) = −1

2
u(x0) + 1L+

Su(x0), (B.19)

lim
x∈V−→x0

1L−Su(x) =
1

2
u(x0) + 1L−Su(x0). (B.20)

Proof. Notice that (B.20) follows trivially from (B.19) by flipping the direction of the unit normal.

To prove Equation (B.19), first let x ∈ S. Then,

1L+
Su(x) = −

∫
S

u(x′) · L(1)
+ (x,x′) dS(x′) (B.21a)

=

∫
S

u(x′) · L(1)
+ (x,x′) dS(x′)−

∫
S

u(x0) · L(1)
+s(x,x

′) dS(x′) +

∫
S

u(x0) · L(1)
+s(x,x

′) dS(x′)

(B.21b)

=

∫
S

u(x′) · L(1)
+ (x,x′) dS(x′)−

∫
S

u(x0) · L(1)
+s(x,x

′) dS(x′)− u(x0), (B.21c)

where L
(1)
+s(x,x

′) is the dyad corresponding to the static fundamental solution and the last step

follows from Lemma B.4.4. By adding and subtracting some terms, the above equation can be

rewritten as

1L+
Su(x) =

∫
S

[
u(x′)− u(x0)

]
· L(1)

+ (x,x′) dS(x′)+∫
S

u(x0) ·
[
L

(1)
+ (x,x′)− L

(1)
+s(x,x

′)
]
dS(x′)− u(x0). (B.22a)

Define

I1(x) :=

∫
S

[
u(x′)− u(x0)

]
· L(1)

+ (x,x′) dS(x′), (B.23a)

I2(x) :=

∫
S

u(x0) ·
[
L

(1)
+ (x,x′)− L

(1)
+s(x,x

′)
]
dS(x′). (B.23b)

Then,

1L+
Su(x) = I1(x) + I2(x)− u(x0). (B.24)
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Repeating the foregoing process for x0 ∈ S yields

1L+
Su(x0) = Ĩ1(x0) + Ĩ2(x0)− 1

2
u(x0), (B.25)

where Ĩ1(x0) and Ĩ2(x0) are obtained substituting x = x0 in Equations (B.23), respectively and

replacing the integrals with CPV integrals. Here, we note that the addition and subtraction of

CPV integrals containing the integrands u(x0) · L(1)
+ (x0,x

′) and u(x0) · L(1)
+s(x0,x

′) is possible

because these integrals exist individually, given that the displacement field is Hölder continuous.

Subtracting (B.25) from (B.24), we get

1L+
Su(x)− 1L+

Su(x0) = I1(x)− Ĩ1(x0) + I2(x)− Ĩ2(x0)− 1

2
u(x0). (B.26)

We need to show that

lim
x∈V+→x0

[
I1(x)− Ĩ1(x0) + I2(x)− Ĩ2(x0)

]
= 0. (B.27)

We will prove the limits separately, as follows:

lim
x∈V+→x0

[
I1(x)− Ĩ1(x0)

]
= 0, (B.28a)

lim
x∈V+→x0

[
I2(x)− Ĩ2(x0)

]
= 0. (B.28b)

First, consider Equation (B.28a). For δ1 > 0, let Bx0
δ1

= B(x0, δ1) be the δ1-neighborhood of

x0, that is, a ball of radius δ1 centered at x0. Also, let Sδ1 = Bx0
δ1
∩ S. Then, according to the

definition of the CPV integral, we have

I1(x)− Ĩ1(x0) = −
∫
S

[
u(x′)− u(x0)

]
·
[
L

(1)
+ (x,x′)− L

(1)
+ (x0,x

′)
]
dS(x′)+

lim
δ1→0

∫
Sδ1

[
u(x′)− u(x0)

]
· L(1)

+ (x,x′) dS(x′). (B.29)

Therefore,

lim
x→x0

[
I1(x)− Ĩ1(x0)

]
= lim

x→x0

lim
δ1→0

{∫
S\Sδ1

[
u(x′)− u(x0)

]
·
[
L

(1)
+ (x,x′)− L

(1)
+ (x0,x

′)
]
dS(x′)+∫

Sδ1

[
u(x′)− u(x0)

]
· L(1)

+ (x,x′) dS(x′)
}
. (B.30)
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First note that when x = x0, the first integral in the parentheses is trivially zero. In the second

integral, the integrand is singular. We can show that this integral vanishes in the limit δ1 → 0

despite the singularity, as follows. Assuming that S is smooth at x0, we transform the integral into

polar coordinates (ρ, θ) that are defined on the tangent plane of S at x0, with the origin placed at

x0. The singularity of the integrand leads to integrals of the following type:∫ θmax

θmin

∫ ρ0

0
ρα

1

ρ2
ρ dρdθ =

∫ θmax

θmin

ρα0
α
dθ, (B.31)

which converges to zero as δ1 goes to zero since α > 0.

When x /∈ S, we need to show that given ε > 0, there exist positive numbers d0 and d1 such

that for δ1 < d0 and |x− x0| < d1 ∣∣∣∣P (x, δ1) +Q(x, δ1)

∣∣∣∣ < ε, (B.32)

where P (x, δ1) and Q(x, δ1) are the two integrals in (B.30) and d0 can depend on x. First consider

the integral Q(x, δ1). Since the distance |x′−x| is bounded below for a fixed x, there exists M > 0

such that

max
j,k

{
sup
x′∈S

∣∣∣L(1)
+jk

(x,x′)
∣∣∣} < M. (B.33)

Because of Hölder continuity of the displacement field, there exist positive real numbers α, δ′1 and

C ′1 such that

|u(x′)− u(x0)| < C ′1|x′ − x0|α < C ′1δ
′
1
α

(B.34)

for |x′ − x0| < δ′1. Furthermore, since∣∣∣∣∣
∫
Sδ1

dS(x′)

∣∣∣∣∣→ 0 as δ1 → 0, (B.35)

there exists δ′′1 > 0 such that ∣∣∣∣∣
∫
Sδ1

dS(x′)

∣∣∣∣∣ < M (B.36)

for δ1 < δ′′1 .



www.manaraa.com

244

Given ε1 > 0, choose

δ1 < min

{
δ′1, δ

′′
1 ,

(
ε1

M2C ′1

)1/α
}
. (B.37)

Then,

|Q(x, δ1)| ≤
∫
Sδ1

∣∣∣[u(x′)− u(x0)
]
· L(1)

+ (x,x′)
∣∣∣ dS(x′) (B.38a)

≤
√

3M

∫
Sδ1

∣∣u(x′)− u(x0)
∣∣ dS(x′) (B.38b)

< MC ′1δ
′
1
α
∫
Sδ1

dS(x′) (B.38c)

< M2C ′1δ
′
1
α
< ε1. (B.38d)

Now consider the integral P (x, δ1):

|P (x, δ1)| <
∣∣∣∣∣
∫
S\Sδ1

[
u(x′)− u(x0)

]
·
[
L

(1)
+ (x,x′)− L

(1)
+ (x0,x

′)
]
dS(x′)

∣∣∣∣∣ (B.39a)

<

∫
S\Sδ1

∣∣∣∣ [u(x′)− u(x0)
]
·
[
L

(1)
+ (x,x′)− L

(1)
+ (x0,x

′)
] ∣∣∣∣dS(x′). (B.39b)

The integrand in the inequality above is bounded because of the Hölder continuity property of the

displacement field, although L
(1)
+ (x0,x

′) itself cannot be bounded as δ1 approaches zero. Therefore,

the supremum of this integrand over S exists. Let us define

U(x) := sup
x′∈S

∣∣∣∣ [u(x′)− u(x0)
]
·
[
L

(1)
+ (x,x′)− L

(1)
+ (x0,x

′)
] ∣∣∣∣. (B.40)

Since L
(1)
+ (x,x′) converges to L

(1)
+ (x0,x

′), the function U(x) must converge to zero as x → x0.

Therefore, given a positive constant ε1, we can always find d1 > 0 such that U(x) < ε1 for

|x− x0| < d1. We can now reduce the inequality in (B.39) further, as shown below:

|P (x, δ1)| < U(x)

∫
S\Sδ1

dS(x′) < Kε1 (B.41)

for some constant K > 0 and |x− x0| < d1. Note that K is chosen to be independent of δ1.

We shall now prove (B.32) from the foregoing results. Given ε > 0, select ε1 such that

ε1 +Kε1 < ε. (B.42)
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Then, choose d1 > 0 such that

|P (x, δ1)| < Kε1. (B.43)

For any x satisfying |x− x0| < d1, we can then choose d0 > 0 such that

|Q(x, δ1)| < ε1 (B.44)

for δ1 < d0. Therefore,

|P (x, δ1) +Q(x, δ1)| < ε1 +Kε1 < ε. (B.45)

This completes the proof of Equation (B.28a). Equation (B.28b) can be proved in a similar fashion.
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APPENDIX C. EVALUATION OF SINGULAR AND NEAR-SINGULAR

INTEGRALS

C.1 Singular Integrals

The Laurent series expansions of the integrands corresponding to various kernels are given in

this section. These expansions were originally derived in [112]. There are four different kernels,

including U±(x,x′), T
(2)
± (x,x′), K

(2)
± (x,x′) and H±(x,x′). For brevity, these will be called the

U-kernel, T-kernel, K-kernel and H-kernel, respectively.

C.1.1 Laurent Series Expansions

For the K-kernel, we have the following integral

Z±Kmn = −
∫

Ω
L̃i(ξ) ẽ

(q)
β (ξj) ·K(2)

± (y
(q)
j ,x(p)(ξ)) · e(p)

α (ξ)J (ξ) dξ1dξ2, (C.1)

When the collocation point lies on triangle p, on which the integration is performed, the inte-

grand is singular. We then have q = p and y
(q)
j = x(p)(ξj). Therefore, the integral can be rewritten,

generally, as

IK = −
∫

Ω
K(ξj , ξ) · φ(ξ)J (ξi) dξ1dξ2, (C.2)

where

K(ξj , ξ) := ẽ
(q)
β (ξj) ·K(2)

± (x(p)(ξj),x
(p)(ξ)),

φ(ξ) := Li(ξ)e(p)
α (ξ). (C.3)

Note that K(2)(ξj , ξ) is singular at ξ = ξj . Also, the Jacobian J (ξ) in the integral cancels with the

one in the denominator of L̃i(ξ). Therefore, defining the interpolation function L̃i(ξ) as in (4.93)

enables more accurate evaluation of the integral since the Jacobian, which is a non-polynomial
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function, is eliminated. Transform the integral into new variables given by η = (η1, η2), with ξj

mapping to η0

IK = −
∫

Ωη

K(ξj(η0), ξ(η)) · φ(ξ(η)) J̃(η) dη1dη2, (C.4)

where J̃(η) = J (ξi) J̃ (η), with J̃ (η) being the Jacobian of the transformation from ξ to η.

Transform the integral further into polar coordinates centered at η0.

IK = −
∫

Γ
F (ρ, θ)dρdθ, (C.5)

with F (ρ, θ) = K · φJ̃ρ, where K, φ and J̃ should be seen as functions of ρ and θ.

Let the Laurent series expansion of F (ρ, θ) in terms of ρ be

F (ρ, θ) =
F−2(θ)

ρ2
+
F−1(θ)

ρ
+O(1). (C.6)

Then F−2(θ) = 0 and

F−1(θ) =
J0

2πC3
{A3,0 (φ0 ·C)(e0 · n̂) +A2,0 (φ0 · n̂)(e0 ·C)} , (C.7)

where

J̃ = J0 + ρJ1 +O(ρ2), (C.8a)

φ = φ0 + ρφ1 +O(ρ2), (C.8b)

Aj = Aj,0 + ρAj,1 +O(ρ2) (j = 1, 2, 3), (C.8c)

R = ρC + ρ2D +O(ρ3). (C.8d)

Here, e0 = e
(q)
β (ξj) and n̂ = n̂(y

(p)
j ). The coefficients in the foregoing expansions are evaluated at

ρ = 0, i.e., at ξ = ξj . In general, all the coefficients are functions of θ. The term e0 · n̂ is zero when

e0 is a tangent vector at ξj because n̂ is the unit normal at ξj . This is indeed the case when the

testing function is either ẽ
(p)
1 (ξj) or ẽ

(p)
2 (ξj). Similarly, φ0 · C becomes zero when the expansion

function is e
(p)
3 (ξj). Similar observations can be made for the quantities in the last term of (C.7).

Also, when i 6= j, φ0 is zero since Li(ξj) = δij . Therefore, F−1(θ) is zero in that case. According

to these observations, singularity subtraction needs to be performed only for a few combinations of

the testing and expansion functions.
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For the H-kernel, we have the following integral

Z±Hmn := =

∫
Ω
Li(ξ) ẽ

(q)
β (ξj) ·H±(y

(q)
j ,x′) · e(p)

α (ξ)J (ξ) dξ1dξ2. (C.9)

Following the same process that is applied for the K-kernel, the general form of this integral is

IH = =

∫
Ωη

H(ξj(η0), ξ(η)) · φ(ξ(η)) J(η) dη1dη2, (C.10)

where J(η) = J (ξ(η)) J̃ (η). This integral can be transformed into polar coordinates as follows

IH = =

∫
Γ
F̃ (ρ, θ)dρdθ, (C.11)

with F̃ (ρ, θ) = H ·φJρ, where H, φ and J should be seen as functions of ρ and θ. Let the Laurent

series expansion of F̃ (ρ, θ) in terms of ρ be

F̃ (ρ, θ) =
F̃−2(θ)

ρ2
+
F̃−1(θ)

ρ
+O(1). (C.12)

The coefficients of the expansion are

F̃−2(θ) =
µ

πC3
(V0 · φ0), (C.13)

F̃−1(θ) =
µ

πC3

{
−3E

C2
(V0 · φ0) + V1 · φ0 + V0 · φ1

}
, (C.14)

where

V0 =B2,0(N0 · n̂)(e0 · d0)d0 +B4,0(N0 · n̂)e0 +B4,0(e0 ·N0)n̂ +B6,0(e0 · n̂)N0, (C.15)

V1 =[d0 ·N1 + d1 ·N0] {B1,0(e0 · d0)(d0 · n̂)d0 +B2,0(e0 · d0)n̂ +B3,0(e0 · n̂)d0}+

{B2,0(e0 ·N0)d0 +B5,0(e0 · d0)d0} (d1 · n̂) +
∑
li≥0 3∑
i li=1

B2,l1(e0 · dl2)(Nl4 · n̂)dl3

{B4,1N0 +B4,0N1} · n̂e0 + {B4,1e0 ·N0 +B4,0e0 ·N1} n̂ + {B6,1N0 +B6,0N1} e0 · n̂,

(C.16)

and

Bj = Bj,0 + ρBj,1 +O(ρ2) (j = 1, 2, . . . 6), (C.17a)
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J n̂′ = N0 + ρN1 +O(ρ2), (C.17b)

R̂ =
C

C
+ ρ

(
D

C
− CE

C3

)
+O(ρ2) (C.17c)

= d0 + ρd1 +O(ρ2), (C.17d)

C = |C|, E = C ·D. (C.17e)

Since U±(x,x′) is weakly-singular, the integrals corresponding to this kernel can be integrated

without singularity subtraction. Specifically, these integrals can be written in the form of Equation

(C.5) using polar-coordinate transformation. The corresponding integrand is regular due to can-

cellation of the 1/ρ singularity by the Jacobian of the polar-coordinate transformation. Integrals

corresponding to the T-kernel are evaluated in the same way as the H-kernel. The steps from

(C.9) through (C.12) can be repeated by replacing H±(x,x′) with T
(2)
± (x,x′). The Laurent series

corresponding to the T-kernel has F̃−2(θ) = 0. The coefficient F̃−1(θ) is given by

F̃−1(θ) =
1

2πC3
{A2,0 (φ0 ·C)(e0 ·N0) +A3,0 (φ0 ·N0)(e0 ·C)} . (C.18)

C.1.2 Coefficients of Taylor Series Expansions

It is required to obtain coefficients of the Taylor series expansions in (C.8) and (C.17). Consider

a function h(ξ) that is transformed into the variables η = (η1, η2) via the transformation (4.125)

and then into polar coordinates centered at η0 via (4.114). Assume that ξ0 ∈ Ω corresponds to the

point η0. Then, the Taylor series of this function about ρ = 0 is obtained as follows:

h(ξ) =h(ξ0) + ρ

[
∂h(ξ0)

∂η1
cos θ +

∂h(ξ0)

∂η2
sin θ

]
+

ρ2

[
∂2h(ξ0)

∂η2
1

cos2 θ

2
+
∂2h(ξ0)

∂η1∂η2
cos θ sin θ +

∂2h(ξ0)

∂η2
2

sin2 θ

2

]
+O(ρ3), (C.19)

where

∂h(ξ0)

∂η1
=
∂h(ξ0)

∂ξ1

∂ξ1

∂η1
+
∂h(ξ0)

∂ξ2

∂ξ2

∂η1
(C.20a)

=
∂h(ξ0)

∂ξ1
(1) +

∂h(ξ0)

∂ξ2
(0) (C.20b)

=
∂h(ξ0)

∂ξ1
, (C.20c)
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∂h(ξ0)

∂η2
=
∂h(ξ0)

∂ξ1

∂ξ1

∂η2
+
∂h(ξ0)

∂ξ2

∂ξ2

∂η2
(C.20d)

=
∂h(ξ0)

∂ξ1

(−g12(ξ0)

J (ξ0)

)
+
∂h(ξ0)

∂ξ2

(
g11(ξ0)

J (ξ0)

)
(C.20e)

=
1

J (ξ0)

[
−g12(ξ0)

∂h(ξ0)

∂ξ1
+ g11(ξ0)

∂h(ξ0)

∂ξ2

]
, (C.20f)

∂2h(ξ0)

∂η2
1

=
∂2h(ξ0)

∂ξ2
1

, (C.20g)

∂2h(ξ0)

∂η1∂η2
=

1

J (ξ0)

[
−g12(ξ0)

∂2h(ξ0)

∂2ξ1
+ g11(ξ0)

∂2h(ξ0)

∂ξ1∂ξ2

]
, (C.20h)

∂2h(ξ0)

∂η2
2

=
1

J 2(ξ0)

[
−g12

(
−g12

∂2h(ξ0)

∂2ξ1
+ g11

∂2h(ξ0)

∂ξ1∂ξ2

)
+ g11

(
−g12

∂2h(ξ0)

∂ξ1∂ξ2
+ g11

∂2h(ξ0)

∂2ξ2

)]
(C.20i)

=
1

J 2(ξ0)

[
g2

12

∂2h(ξ0)

∂2ξ1
− 2g12g11

∂2h(ξ0)

∂ξ1∂ξ2
+ g2

11

∂2h(ξ0)

∂2ξ2

]
. (C.20j)

Therefore, if the derivatives of h(ξ) with respect to ξ1 and ξ2 are obtained, the coefficients of its

Taylor series expansion can be readily calculated. When the variation of h as a function of τ = iksR

is known, as it is for the quantities Bj and Ak (j = 1, 2, . . . 6 and k = 1, 2, 3), it is easier to compute

these derivatives as follows

∂h

∂ξi
=

dh

dτ

∂τ

∂ξi
=

dh

dτ

(
iks

∂R

∂ξi

)
=
iks
2R

(
2R · ∂x′

∂ξi

)
dh

dτ
= iks(R̂ · ei)

dh

dτ
(i = 1, 2). (C.21)

From the above, we find that the derivative of h(τ) needs to be calculated. Only the first derivative

is required for calculating the singular integrals. The second derivative will be used for calculating

the near-singular integrals.

The functions Bj(τ), Ak(τ) and their derivatives are evaluated as shown below. From (4.25),

we have

M(τ) =
eατ (1− ατ)− eτ (1− τ)

τ2
, ψ(τ) = eτ −M(τ), χ(τ) = eατα2 − eτ + 3M(τ). (C.22)

Let γ(τ) be defined as follows

γ(τ) :=
eτ (1− τ)

τ2
. (C.23)
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Let the derivative of a function with respect to its argument be represented by the prime super-

script. Multiple derivatives are represented using double and triple prime superscripts. Taking the

derivative of eτ (1− τ) with respect to τ , we get

[eτ (1− τ)]′ = eτ (1− τ)− eτ = −τeτ . (C.24)

The derivatives of γ(τ) can be expressed as follows

γ′(τ) =
[eτ (1− τ)]′

τ2
− 2eτ (1− τ)

τ3
(C.25a)

=
−τeτ
τ2
− 2eτ (1− τ)

τ3
(C.25b)

= −e
τ

τ
− 2γ(τ)

τ
, (C.25c)

γ′′(τ) = −e
τ

τ
+
eτ

τ2
− 2γ′(τ)

τ
+

2γ(τ)

τ2
(C.25d)

=
eτ (1− τ)

τ2
− 2γ′(τ)

τ
+

2γ(τ)

τ2
(C.25e)

= γ(τ)− 2γ′(τ)

τ
+

2γ(τ)

τ2
, (C.25f)

γ′′′(τ) = γ′(τ)− 2γ′′(τ)

τ
+

2γ′(τ)

τ2
+

2γ′(τ)

τ2
− 4γ(τ)

τ3
(C.25g)

= γ′(τ)− 2γ′′(τ)

τ
+

4γ′(τ)

τ2
− 4γ(τ)

τ3
. (C.25h)

Then, the functional forms of all the required quantities can be derived as shown below

M(τ) = α2γ(ατ)− γ(τ), (C.26a)

M ′(τ) = α3γ′(ατ)− γ′(τ), (C.26b)

M ′′(τ) = α4γ′′(ατ)− γ′′(τ), (C.26c)

M ′′′(τ) = α5γ′′′(ατ)− γ′′′(τ). (C.26d)

χ′(τ) = α3eατ − eτ + 3M ′(τ), (C.26e)

χ′′(τ) = α4eατ − eτ + 3M ′′(τ), (C.26f)
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χ′′′(τ) = α5eατ − eτ + 3M ′′′(τ). (C.26g)

ψ′(τ) = eτ −M ′(τ), (C.26h)

ψ′′(τ) = eτ −M ′′(τ), (C.26i)

ψ′′′(τ) = eτ −M ′′′(τ). (C.26j)

A1(τ) = τχ′(τ)− 3χ(τ), (C.27a)

A′1(τ) = τχ′′(τ) + χ′(τ)− 3χ′(τ) = τχ′′(τ)− 2χ′(τ), (C.27b)

A′′1(τ) = τχ′′′(τ) + χ′′(τ)− 2χ′′(τ) = τχ′′′(τ)− χ′′(τ). (C.27c)

A2(τ) =
τψ′(τ)− ψ(τ) + χ(τ)

2
, (C.27d)

A′2(τ) =
τψ′′(τ) + ψ′(τ)− ψ′(τ) + χ′(τ)

2
=
τψ′′(τ) + χ′(τ)

2
, (C.27e)

A′′2(τ) =
τψ′′′(τ) + ψ′′(τ) + χ′′(τ)

2
. (C.27f)

A3(τ) = χ(τ) +

(
1

2α2
− 1

)
[A1 + 2A2 + 3χ(τ)], (C.27g)

A′3(τ) = χ′(τ) +

(
1

2α2
− 1

)
[A′1 + 2A′2 + 3χ′(τ)], (C.27h)

A′′3(τ) = χ′′(τ) +

(
1

2α2
− 1

)
[A′′1 + 2A′′2 + 3χ′′(τ)]. (C.27i)

The functions Bj(τ) and their derivatives are given by (C.28). The first derivatives of only B2(τ),

B4(τ) and B6(τ) are needed.

B1(τ) = A′1τ − 5A1, (C.28a)

B2(τ) = (A′2τ − 3A2 +A1)/2, (C.28b)

B3(τ) = A1 +

(
1

2α2
− 1

)
(A′1τ + 2A′2τ − 6A2), (C.28c)

B4(τ) = A2, (C.28d)

B5(τ) = A′3τ − 3A3, (C.28e)
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B6(τ) = A3 +

(
1

2α2
− 1

)
(A′3τ + 2A2). (C.28f)

B′2(τ) = (A′′2τ +A′2 − 3A′2 +A′1)/2 = (A′′2τ − 2A′2 +A′1)/2, (C.28g)

B′4(τ) = A′2, (C.28h)

B′6(τ) = A′3 +

(
1

2α2
− 1

)
(A′′3τ +A′3 + 2A′2). (C.28i)

The above expressions can be used for direct evaluation of the functions only when τ is not

equal to zero. This is the case for the nearly-singular integrals. However, for singular integrals,

the limits as τ → 0 have to be obtained as shown below. All the following expressions have been

verified using symbolic computations in Wolfram Mathematica [202].

γ(τ) =
eτ (1− τ)

τ2
(C.29a)

=
1

τ2
− 1

2
− τ

3
− τ2

8
− τ3

30
+O(τ4), (C.29b)

γ′(τ) = −e
τ

τ
− 2γ(τ)

τ
(C.29c)

= −1 + τ + τ2/2 + τ3/6

τ
− 2

τ

(
1

τ2
− 1

2
− τ

3
− τ2

8
− τ3

30

)
+O(τ3) (C.29d)

= − 2

τ3
− 1

3
− τ

4
− τ2

10
+O(τ3), (C.29e)

γ′′(τ) = γ(τ)− 2γ′(τ)

τ
+

2γ(τ)

τ2
(C.29f)

=
1

τ2
− 1

2
− τ

3
− 2

τ

(
− 2

τ3
− 1

3
− τ

4
− τ2

10

)
+

2

τ2

(
1

τ2
− 1

2
− τ

3
− τ2

8
− τ3

30

)
+O(τ2) (C.29g)

=
6

τ4
− 1

4
− τ

5
+O(τ2), (C.29h)

γ′′′(τ) = γ′(τ)− 2γ′′(τ)

τ
+

4γ′(τ)

τ2
− 4γ(τ)

τ3
(C.29i)

= −24

τ5
− 1

5
+O(τ). (C.29j)
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lim
τ→0

M(τ) = lim
τ→0

α2γ(ατ)− γ(τ) (C.30a)

= lim
τ→0

α2

(
1

(ατ)2
− 1

2

)
−
(

1

τ2
− 1

2

)
(C.30b)

=
1− α2

2
, (C.30c)

lim
τ→0

M ′(τ) = lim
τ→0

α3γ′(ατ)− γ′(τ) (C.30d)

= lim
τ→0

(
1

3
+

2

τ3

)
− α3

(
1

3
+

2

(ατ)3

)
(C.30e)

=
1− α3

3
, (C.30f)

lim
τ→0

M ′′(τ) = lim
τ→0

α4γ′′(ατ)− γ′′(τ) (C.30g)

= lim
τ→0

α4

(
6

(ατ)4
− 1

4

)
−
(

6

τ4
− 1

4

)
(C.30h)

=
1− α4

4
, (C.30i)

lim
τ→0

M ′′′(τ) = lim
τ→0

α5γ′′′(ατ)− γ′′′(τ) (C.30j)

= lim
τ→0

(
24

τ5
+

1

5

)
− α5

(
24

(ατ)5
+

1

5

)
(C.30k)

=
1− α5

5
. (C.30l)

lim
τ→0

χ(τ) = lim
τ→0

eατα2 − eτ + 3M(τ) (C.31a)

= (α2 − 1) +
3

2
(1− α2) (C.31b)

=
1− α2

2
, (C.31c)

lim
τ→0

χ′(τ) = lim
τ→0

α3eατ − eτ + 3M ′(τ) (C.31d)

= (α3 − 1) + (1− α3) = 0, (C.31e)

lim
τ→0

χ′′(τ) = lim
τ→0

α4eατ − eτ + 3M ′′(τ) (C.31f)
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= lim
τ→0

α4 − 1 + 3

(
1− α4

4

)
(C.31g)

=
α4 − 1

4
, (C.31h)

lim
τ→0

χ′′′(τ) = lim
τ→0

α5eατ − eτ + 3M ′′′(τ) (C.31i)

= lim
τ→0

α5 − 1 + 3

(
1− α5

5

)
(C.31j)

=
2(α5 − 1)

5
. (C.31k)

lim
τ→0

ψ(τ) = lim
τ→0

eτ −M(τ) (C.32a)

= 1− 1− α2

2
=

1 + α2

2
, (C.32b)

lim
τ→0

ψ′(τ) = lim
τ→0

eτ −M ′(τ) (C.32c)

= 1− 1− α3

3
=

2 + α3

3
, (C.32d)

lim
τ→0

ψ′′(τ) = lim
τ→0

eτ −M ′′(τ) (C.32e)

= lim
τ→0

1− 1− α4

4
=

3 + α4

4
, (C.32f)

lim
τ→0

ψ′′′(τ) = lim
τ→0

eτ −M ′′′(τ) (C.32g)

= lim
τ→0

1− 1− α5

5
=

4 + α5

5
. (C.32h)

lim
τ→0

A1(τ) = lim
τ→0

τχ′(τ)− 3χ(τ) (C.33a)

= lim
τ→0

0− 3

2
(1− α2) (C.33b)

=
3

2
(α2 − 1), (C.33c)

lim
τ→0

A′1(τ) = lim
τ→0

τχ′′(τ)− 2χ′(τ) (C.33d)

= lim
τ→0

τ
α4 − 1

4
− 0 (C.33e)

= 0, (C.33f)
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lim
τ→0

A′′1(τ) = lim
τ→0

τχ′′′(τ)− χ′′(τ) (C.33g)

= lim
τ→0

τ
2(α5 − 1)

5
− α4 − 1

4
(C.33h)

=
1− α4

4
. (C.33i)

lim
τ→0

A2(τ) = lim
τ→0

τψ′(τ)− ψ(τ) + χ(τ)

2
(C.34a)

= lim
τ→0

1

2

(
τ(2 + α3)

3
− (1 + α2)

2
+

1− α2

2

)
= −α2/2, (C.34b)

lim
τ→0

A′2(τ) = lim
τ→0

τψ′′(τ) + χ′(τ)

2
(C.34c)

= 0, (C.34d)

lim
τ→0

A′′2(τ) = lim
τ→0

τψ′′′(τ) + ψ′′(τ) + χ′′(τ)

2
(C.34e)

= lim
τ→0

1

2

(
τ(4 + α5)

5
+

(3 + α4)

4
+

(α4 − 1)

4

)
(C.34f)

=
1 + α4

4
. (C.34g)

lim
τ→0

A3(τ) = lim
τ→0

χ(τ) +

(
1

2α2
− 1

)
[A1 + 2A2 + 3χ(τ)] (C.35a)

= lim
τ→0

1− α2

2
+

(
1

2α2
− 1

)(
3(α2 − 1)

2
− α2 +

3(1− α2)

2

)
(C.35b)

= lim
τ→0

1− α2

2
− 1

2
+ α2 =

α2

2
, (C.35c)

lim
τ→0

A′3(τ) = lim
τ→0

χ′(τ) +

(
1

2α2
− 1

)
[A′1 + 2A′2 + 3χ′(τ)] (C.35d)

= 0 +

(
1

2α2
− 1

)
(0 + 0 + 0) (C.35e)

= 0, (C.35f)

lim
τ→0

A′′3(τ) = lim
τ→0

χ′′(τ) +

(
1

2α2
− 1

)
[A′′1 + 2A′′2 + 3χ′′(τ)] (C.35g)

=
α4 − 1

4
+

(
1

2α2
− 1

)(
1− α4

4
+

1 + α4

2
+

3(α4 − 1)

4

)
(C.35h)

=
α4 − 1

4
+
α2

2
− α4 =

−1 + 2α2 − 3α4

4
. (C.35i)



www.manaraa.com

257

lim
τ→0

B1 = lim
τ→0

A′1τ − 5A1 =
15

2
(1− α2), (C.36a)

lim
τ→0

B2 = lim
τ→0

(A′2τ − 3A2 +A1)/2 =
3α2

4
+

3

4
(α2 − 1) =

3α2

2
− 3

4
, (C.36b)

lim
τ→0

B′2 = lim
τ→0

(A′′2τ − 2A′2 +A′1)/2 = 0, (C.36c)

lim
τ→0

B3 = lim
τ→0

A1 +

(
1

2α2
− 1

)
(A′1τ + 2A′2τ − 6A2) =

3

2
(α2 − 1) +

(
1

2α2
− 1

)
3α2 = −3α2

2
,

(C.36d)

lim
τ→0

B4 = lim
τ→0

A2 = −α2/2, (C.36e)

lim
τ→0

B′4 = lim
τ→0

A′2 = 0, (C.36f)

lim
τ→0

B5 = lim
τ→0

A′3τ − 3A3 = −3α2

2
, (C.36g)

lim
τ→0

B6 = lim
τ→0

A3 +

(
1

2α2
− 1

)
(A′3τ + 2A2) =

α2

2
+

(
1

2α2
− 1

)
(−α2) =

3α2 − 1

2
, (C.36h)

lim
τ→0

B′6 = lim
τ→0

A′3 +

(
1

2α2
− 1

)
(A′′3τ +A′3 + 2A′2) = 0. (C.36i)

Observe that the first derivatives of the functions Ak and Bj (j = 2, 4, 6) are zero, and hence, the

coefficients Ak,1 and Bj,1 are zero.

The ξ1 and ξ2 derivatives of J(η), R and φ(ξ) are derived below. Recall that J(η) = J (ξ)J̃ ,

where J̃ is a constant. Also, R = x′ − x, where x′ is a function of ξ and x is a constant. We have

J (ξ) =
√

(e1 · e1)(e2 · e2)− (e1 · e2)2. (C.37)

Therefore, the derivative of J (ξ) with respect to ξi is given by

∂J
∂ξi

=
1

2J

[
|e2|2

(
2
∂e1

∂ξi
· e1

)
+ |e1|2

(
2
∂e2

∂ξi
· e2

)
− 2(e1 · e2)

(
∂e1

∂ξi
· e2 + e1 ·

∂e2

∂ξi

)]
. (C.38)

Next, note that the vector φ(ξ) is of the form φ(ξ) = Li(ξ)e
(p)
α (ξ) for basis function indexed by α

at the ith node on triangle p. Therefore,

∂φ

∂ξj
=
∂Li(ξ)

∂ξj
e(p)
α (ξ) + Li(ξ)

∂e
(p)
α (ξ)

∂ξj
. (C.39)
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The first derivatives of R with respect to ξ1 and ξ2 are the basis vectors e1 and e2, and the

second derivatives of R are the derivatives of these basis vectors, which can determined easily. The

coefficients of the Taylor series expansion of R̂ are determined from those of R according to (C.17).

To determine the coefficients of the following expansion

J n̂′ = N0 + ρN1 +O(ρ2), (C.40)

we first observe that J n̂′ = J̃ (η)e3(ξ) = J̃ (η) e1(ξ)× e2(ξ). Since J̃ (η) is constant, we need only

the following derivative

∂e3(ξ)

∂ξj
=
∂e1(ξ)

∂ξj
× e2(ξ) + e1(ξ)× ∂e2(ξ)

∂ξj
. (C.41)

C.2 Nearly-Singular Integrals

C.2.1 H-kernel

Third term. The third term in Equation (4.133) is

F̃3(ρ, θ) =
µ

πR3
B2(R̂ · n̂′)(R̂ · ẽ)(n̂ · φ) Jρ (C.42a)

=
µ

πR5
B2(R · e3)(R · ẽ)(n̂ · φ) J̃ (η)ρ, (C.42b)

which is in same form as Equation (4.147a), with n̂ and ẽ interchanging positions.

B2(R · e3)(R · ẽ)(n̂ · φ) =

3∑
k=0

H2,kρ
k +O(ρ2), (C.43)

where the coefficients H2,k are obtained by multiplication of the polynomials B̃2, M0, M1 and M5.

Then

F̃3(ρ, θ) =
µ

πR5
a

[
3∑

k=0

H2,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.44)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The following part of the integrand is smooth and can

be integrated numerically

F̃S3 (ρ, θ) = F̃3(ρ, θ)− µ

πR5
a

[
3∑

k=0

H2,kρ
k+1

]
J̃ (η). (C.45)
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Fourth term. The fourth term in Equation (4.133) is

F̃4(ρ, θ) =
µ

πR3
B3(R̂ · n̂′)(ẽ · n̂)(R̂ · φ) Jρ (C.46a)

=
µ

πR5
B3(R · e3)(ẽ · n̂)(R · φ) J̃ (η)ρ. (C.46b)

B3(ẽ · n̂)(R · e3)(R · φ) =
3∑

k=0

H3,kρ
k +O(ρ2), (C.47)

where the coefficients H3,k are obtained by multiplication of the polynomials B̃3, M0 and M2. Note

that ẽ · n̂ is a constant and is factored into the coefficients.

F̃4(ρ, θ) =
µ

πR5
a

[
3∑

k=0

H3,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.48)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S4 (ρ, θ) = F̃4(ρ, θ)− µ

πR5
a

[
3∑

k=0

H3,kρ
k+1

]
J̃ (η). (C.49)

Fifth term. Now consider the fifth term in Equation (4.133)

F̃5(ρ, θ) =
µ

πR3
B2(R̂ · n̂)(ẽ · n̂′)(R̂ · φ) Jρ (C.50a)

=
µ

πR5
B2(R · n̂)(ẽ · e3)(R · φ) J̃ (η)ρ. (C.50b)

B2(R · φ)(R · n̂)(ẽ · e3) =
3∑

k=0

H4,kρ
k +O(ρ2), (C.51)

where the coefficients H4,k are obtained by multiplication of the polynomials B̃2, M2, M3 and M6.

Then

F̃5(ρ, θ) =
µ

πR5
a

[
3∑

k=0

H4,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.52)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a).

F̃S5 (ρ, θ) = F̃5(ρ, θ)− µ

πR5
a

[
3∑

k=0

H4,kρ
k+1

]
J̃ (η). (C.53)
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Sixth term. The sixth term in Equation (4.133) is

F̃6(ρ, θ) =
µ

πR3
B5(R̂ · n̂)(R̂ · ẽ)(n̂′ · φ) Jρ (C.54a)

=
µ

πR5
B5(R · n̂)(R · ẽ)(φ · e3) J̃ (η)ρ. (C.54b)

B5(R · ẽ)(R · n̂)(φ · e3) =
3∑

k=0

H5,kρ
k +O(ρ2), (C.55)

where the coefficients H5,k are obtained by multiplication of the polynomials B̃5, M1, M3 and M7.

Then

F̃6(ρ, θ) =
µ

πR5
a

[
3∑

k=0

H5,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.56)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S6 (ρ, θ) = F̃6(ρ, θ)− µ

πR5
a

[
3∑

k=0

H5,kρ
k+1

]
J̃ (η). (C.57)

Seventh term. The seventh term in Equation (4.133) is

F̃7(ρ, θ) =
µ

πR3
B2(R̂ · ẽ)(R̂ · φ)(n̂ · n̂′) Jρ (C.58a)

=
µ

πR5
B2(R · ẽ)(R · φ)(n̂ · e3) J̃ (η)ρ. (C.58b)

B2(R · ẽ)(R · φ)(n̂ · e3) =
3∑

k=0

H6,kρ
k +O(ρ2), (C.59)

where the coefficients H6,k are obtained by multiplication of the polynomials B̃2, M1, M2 and M8.

Then

F̃7(ρ, θ) =
µ

πR5
a

[
3∑

k=0

H6,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.60)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S7 (ρ, θ) = F̃7(ρ, θ)− µ

πR5
a

[
3∑

k=0

H6,kρ
k+1

]
J̃ (η). (C.61)
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Eighth term. The eighth term in Equation (4.133) is

F̃8(ρ, θ) =
µ

πR3
B4(n̂ · n̂′)(ẽ · φ) Jρ (C.62a)

=
µ

πR3
B4(n̂ · e3)(ẽ · φ) J̃ (η)ρ. (C.62b)

B4(n̂ · e3)(ẽ · φ) =
1∑

k=0

H7,kρ
k +O(ρ2), (C.63)

where the coefficients H7,k are obtained by multiplication of the polynomials B̃4, M4 and M8. Then

F̃8(ρ, θ) =
µ

πR3
a

[
1∑

k=0

H7,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.64)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S8 (ρ, θ) = F̃8(ρ, θ)− µ

πR3
a

[
1∑

k=0

H7,kρ
k+1

]
J̃ (η). (C.65)

Ninth term. The ninth term in Equation (4.133) is

F̃9(ρ, θ) =
µ

πR3
B4(ẽ · n̂′)(n̂ · φ) Jρ (C.66a)

=
µ

πR3
B4(ẽ · e3)(n̂ · φ) J̃ (η)ρ. (C.66b)

B4(n̂ · φ)(ẽ · e3) =
1∑

k=0

H8,kρ
k +O(ρ2), (C.67)

where the coefficients H8,k are obtained by multiplication of the polynomials B̃4, M5 and M6. Then

F̃9(ρ, θ) =
µ

πR3
a

[
1∑

k=0

H8,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.68)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S9 (ρ, θ) = F̃9(ρ, θ)− µ

πR3
a

[
1∑

k=0

H8,kρ
k+1

]
J̃ (η). (C.69)
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Tenth term. The tenth term in Equation (4.133) is

F̃10(ρ, θ) =
µ

πR3
B6(ẽ · n̂)(φ · n̂′) Jρ (C.70a)

=
µ

πR3
B6(ẽ · n̂)(φ · e3) J̃ (η)ρ. (C.70b)

B6(φ · e3)(ẽ · n̂) =
1∑

k=0

H9,kρ
k +O(ρ2), (C.71)

where the coefficients H9,k are obtained by multiplication of the polynomials B̃6 and M7. The

constant ẽ · n̂ is factored into the coefficients. Then

F̃10(ρ, θ) =
µ

πR3
a

[
1∑

k=0

H9,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.72)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

F̃S10(ρ, θ) = F̃10(ρ, θ)− µ

πR3
a

[
1∑

k=0

H9,kρ
k+1

]
J̃ (η). (C.73)

C.2.2 K-Kernel

Nearly-singular integrals of the K-kernel can be reduced to a general form similar to the H-

kernel. The general form of these integrals is

IK =

∫
Γ
G̃(ρ, θ)dρdθ, (C.74)

with G̃(ρ, θ) = K ·φJ̃ρ, where J̃ is as defined in (C.4) and K, φ, and J̃ should be seen as functions

of ρ and θ. Recall that the kernel K
(2)
± (x,x′) is given by

K
(2)
± (x,x′) =

1

2πR2

{(
A1R̂R̂ +A2I

)
R̂ · n̂ +

(
A3n̂R̂ +A2R̂n̂

)}
. (C.75)

Therefore G̃(ρ, θ) is in the general form

G̃(ρ, θ) = ẽ ·K(x,x′) · φJ̃ρ (C.76a)

=
1

2πR2
ẽ ·
{

R̂ · n̂
(
A1R̂R̂ +A2I

)
+
(
A3n̂R̂ +A2R̂n̂

)}
· φJ̃ρ. (C.76b)
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First term. The first term in Equation (C.76b) is

G̃1(ρ, θ) =
1

2πR2
A1(ẽ · R̂)(φ · R̂)(R̂ · n̂) J̃ρ (C.77a)

=
1

2πR5
A1(ẽ ·R)(φ ·R)(R · n̂)J̃ρ. (C.77b)

Define the Taylor series expansions J̃ = M9,0 + ρM9,1 + O(ρ2) and Aj = Ãj,1 + ρÃj,1 + O(ρ2)

for j = 1, 2, 3. Also, define polynomials Ãk from the respective coefficients of the Taylor series

expansions. From the expansions (4.136), we have

A1(ẽ ·R)(φ ·R)(R · n̂)J̃ =
3∑

k=0

K0,kρ
k +O(ρ2), (C.78)

where the coefficients K0,k are obtained by multiplication of the polynomials Ã1, M1, M2, M3 and

M9.

Then

G̃1(ρ, θ) =
1

2πR5
a

[
3∑

k=0

K0,kρ
k+1 +G(ρ, θ)

]
, (C.79)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

G̃S1 (ρ, θ) = G̃1(ρ, θ)− 1

2πR5
a

[
3∑

k=0

K0,kρ
k+1

]
. (C.80)

Second term. The second term in Equation (C.76b) is

G̃2(ρ, θ) =
1

2πR2
A2(ẽ · φ)(R̂ · n̂) J̃ρ (C.81a)

=
1

2πR3
A2(ẽ · φ)(R · n̂)J̃ρ. (C.81b)

A2(R · n̂)(ẽ · φ)J̃ =

1∑
k=0

K1,kρ
k +O(ρ2), (C.82)

where the coefficients K1,k are obtained by multiplication of the polynomials Ã2, M3, M4 and M9.

Then

G̃2(ρ, θ) =
1

2πR3
a

[
1∑

k=0

K1,kρ
k+1 +G(ρ, θ)

]
, (C.83)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

G̃S2 (ρ, θ) = G̃2(ρ, θ)− 1

2πR3
a

[
1∑

k=0

K1,kρ
k+1

]
. (C.84)
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Third term. The third term in Equation (C.76b) is

G̃3(ρ, θ) =
1

2πR2
A3(ẽ · n̂)(R̂ · φ) J̃ρ (C.85a)

=
1

2πR3
A3(ẽ · n̂)(R · φ)J̃ρ. (C.85b)

A3(R · φ)(ẽ · n̂)J̃ =
1∑

k=0

K2,kρ
k +O(ρ2), (C.86)

where the coefficients K2,k are obtained by multiplication of the polynomials Ã3, M2 and M9. The

constant ẽ · n̂ is absorbed into the coefficients. Then

G̃3(ρ, θ) =
1

2πR3
a

[
1∑

k=0

K2,kρ
k+1 +G(ρ, θ)

]
, (C.87)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

G̃S3 (ρ, θ) = G̃3(ρ, θ)− 1

2πR3
a

[
1∑

k=0

K2,kρ
k+1

]
. (C.88)

Fourth term. The fourth term in Equation (C.76b) is

G̃4(ρ, θ) =
1

2πR2
A2(ẽ · R̂)(n̂ · φ) J̃ρ (C.89a)

=
1

2πR3
A2(ẽ ·R)(n̂ · φ)J̃ρ. (C.89b)

A2(e ·R)(n̂ · φ)J̃ =
1∑

k=0

K3,kρ
k +O(ρ2), (C.90)

where the coefficients K3,k are obtained by multiplication of the polynomials Ã2, M1, M5 and M9.

Then

G̃4(ρ, θ) =
1

2πR3
a

[
1∑

k=0

K3,kρ
k+1 +G(ρ, θ)

]
, (C.91)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

G̃S4 (ρ, θ) = G̃4(ρ, θ)− 1

2πR3
a

[
1∑

k=0

K3,kρ
k+1

]
. (C.92)
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C.2.3 U-Kernel

The general form of the integrals of the U-kernel can be obtained directly from that of the

K-kernel by switching the kernels. An alternate expression for U±(x,x′) is used for singularity

subtraction:

U±(x,x′) =
1

4πµ±R

(
A4R̂R̂ +A5I

)
, (C.93)

where

A4 =
(ατ2 − 3ατ + 3)eατ − (τ2 − 3τ + 3)eτ

τ2
, (C.94)

A5 =
(ατ − 1)eατ − (−τ2 + τ − 1)eτ

τ2
. (C.95)

All other quantities are defined as in (4.25). Therefore, the general form of the integrand Ỹ (ρ, θ) =

U · φJ̃ is given by

Ỹ (ρ, θ) = ẽ ·U(x,x′) · φJ̃ρ =
1

4πµR
ẽ ·
(
A4R̂R̂ +A5I

)
· φJ̃ρ. (C.96)

Define the Taylor series expansions and Aj = Ãj,1 + ρÃj,1 + O(ρ2) for j = 4, 5. Also, define the

respective Taylor polynomials as Ãj .

First term. The first term in Equation (C.96) is

Ỹ1(ρ, θ) =
1

4πµR
A4(ẽ · R̂)(R̂ · φ) J̃ρ (C.97a)

=
1

4πµR3
A4(ẽ ·R)(R · φ)J̃ρ. (C.97b)

A4(ẽ ·R)(R · φ)J̃ =
1∑

k=0

G0,kρ
k +O(ρ2), (C.98)

where the coefficients G0,k are obtained by multiplication of the polynomials Ã4, M1, M2 and M9.

Then

Ỹ1(ρ, θ) =
1

4πµR3
a

[
1∑

k=0

G0,kρ
k+1 +G(ρ, θ)

]
, (C.99)
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where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

Ỹ S
1 (ρ, θ) = Ỹ1(ρ, θ)− 1

4πµR3
a

[
1∑

k=0

G0,kρ
k+1

]
. (C.100)

The second term is not nearly-singular. Therefore, no subtraction is required.

C.2.4 T-Kernel

The general form of the nearly-singular integrals of the T-kernel can be obtained directly from

that of the H-kernel by switching the kernels. Recall that T
(2)
± (x,x′) is given by

T
(2)
± (x,x′) =

1

2πR2

{(
A1R̂R̂ +A2I

)
R̂ · n̂′ +

(
A2n̂

′R̂ +A3R̂n̂′
)}

. (C.101)

Therefore, the general form of the integrand Z̃(ρ, θ) = T · φJ is given by

Z̃(ρ, θ) = ẽ ·T(x,x′) · φJρ (C.102)

=
1

2πR2
ẽ ·
{

R̂ · n̂′
(
A1R̂R̂ +A2I

)
+
(
A2n̂

′R̂ +A3R̂n̂′
)}
· φJρ. (C.103)

First term. The first term in Equation (C.103) is

Z̃1(ρ, θ) =
1

2πR2
A1(ẽ · R̂)(φ · R̂)(R̂ · n̂′) Jρ (C.104a)

=
1

2πR5
A1(ẽ ·R)(φ ·R)(R · e3)J̃ (η)ρ. (C.104b)

A1(ẽ ·R)(φ ·R)(R · e3) =
3∑

k=0

T0,kρ
k +O(ρ2), (C.105)

where the coefficients T0,k are obtained by multiplication of the polynomials Ã1, M0, M1 and M2.

Then

Z̃1(ρ, θ) =
1

2πR5
a

[
3∑

k=0

T0,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.106)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

Z̃S1 (ρ, θ) = Z̃1(ρ, θ)− 1

2πR5
a

[
3∑

k=0

T0,kρ
k+1

]
J̃ (η). (C.107)
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Second term. The second term in Equation (C.103) is

Z̃2(ρ, θ) =
1

2πR2
A2(ẽ · φ)(R̂ · n̂′) Jρ (C.108a)

=
1

2πR3
A2(ẽ · φ)(R · e3)J̃ (η)ρ. (C.108b)

A2(R · e3)(ẽ · φ) =
1∑

k=0

T1,kρ
k +O(ρ2), (C.109)

where the coefficients T1,k are obtained by multiplication of the polynomials Ã2, M0 and M4. Then

Z̃2(ρ, θ) =
1

2πR3
a

[
1∑

k=0

T1,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.110)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

Z̃S2 (ρ, θ) = Z̃2(ρ, θ)− 1

2πR3
a

[
1∑

k=0

T1,kρ
k+1

]
J̃ (η). (C.111)

Third term. The third term in Equation (C.103) is

Z̃3(ρ, θ) =
1

2πR2
A2(ẽ · n̂′)(R̂ · φ) J̃ρ (C.112a)

=
1

2πR3
A2(ẽ · e3)(R · φ)J̃ (η)ρ. (C.112b)

A2(R · φ)(ẽ · e3) =
1∑

k=0

T2,kρ
k +O(ρ2), (C.113)

where the coefficients T2,k are obtained by multiplication of the polynomials Ã2, M2 and M6. Then

Z̃3(ρ, θ) =
1

2πR3
a

[
1∑

k=0

T2,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.114)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

Z̃S3 (ρ, θ) = Z̃3(ρ, θ)− 1

2πR3
a

[
1∑

k=0

T2,kρ
k+1

]
J̃ (η). (C.115)
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b

η̃0

Ωη

Figure C.1: Analytical integration of nearly-singular integrals. Projection point η0 is assumed to

lie outside the triangular integration domain.

Fourth term. The fourth term in Equation (C.103) is

Z̃4(ρ, θ) =
1

2πR2
A3(ẽ · R̂)(n̂′ · φ) J̃ρ (C.116a)

=
1

2πR3
A3(ẽ ·R)(e3 · φ)J̃ (η)ρ. (C.116b)

A3(ẽ ·R)(e3 · φ) =

1∑
k=0

T3,kρ
k +O(ρ2), (C.117)

where the coefficients T3,k are obtained by multiplication of the polynomials Ã3, M1 and M7. Then

Z̃4(ρ, θ) =
1

2πR3
a

[
1∑

k=0

T3,kρ
k+1 +G(ρ, θ)

]
J̃ (η), (C.118)

where G(ρ, θ) is either O(ρ3) or O(ρ4/R2
a). The subtracted integrand is

Z̃S4 (ρ, θ) = Z̃4(ρ, θ)− 1

2πR3
a

[
1∑

k=0

T3,kρ
k+1

]
J̃ (η). (C.119)

C.2.5 Analytical Integration of Nearly-Singular Terms

The integral over F̃R1 (ρ, θ) in (4.145) is reproduced below

IR =

∫
Γ

F̃R1 (ρ, θ) dρdθ. (C.120)
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The ρ-integral in IR is evaluated analytically by summing the contributions from the three sub-

triangles that are formed by the vertices of the reference triangle Ωη and the projection point η0,

as shown in Figure C.1. The contributions from the hatched region in the figure will cancel out

in the sum. The limits of the variable ρ are determined according to the foregoing decomposition

of the integration domain. For thin scatterers, the assumption that η0 lies outside the reference

triangle may not be valid. However, as we will see, this assumption is only used for the case when

a = b = 0. Since the variable a is non-zero when η0 lies inside the reference triangle, the foregoing

assumption is valid for the purpose of computing the near-singular integrals in this section. Barring

constants, the general form of the ρ-integrals is as follows

Imn =

ρ0∫
0

ρm

R2n+1
a

dρ, (C.121)

where m and n are integers with n = 1, 2, 3 and m < 2n+ 1. Recall that Ra is given by

Ra =
√
d2 + ρ2d ·C + ρ2 [C2 + 2d ·D], (C.122)

where d is the distance between the projection point and the extended surface of the triangle, and

C > 0. The subscript of Ra will be dropped henceforth for convenience. Therefore, R is in the

following general form

R =
√
a+ bρ+ cρ2, (C.123)

where a ≥ 0, and b, c ∈ R. When the distance d is zero, a = b = 0. In that case, c is always greater

than zero. When d 6= 0, c can be zero in some instances. The integral is evaluated differently for

the following four cases

1. a = b = 0, c > 0,

2. a 6= 0, b ∈ R, c 6= 0,

3. a 6= 0, b 6= 0, c = 0,

4. a 6= 0, b = 0, c = 0.
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In the first case, the integral reduces to

Imn =

ρ0∫
0

ρm

c
2n+1

2 ρ2n+1
dρ. (C.124)

This integral is hypersingular for m 6= 2n and strongly-singular, otherwise. The singularity occurs

due to decomposition of the integral domain in (C.120) into three subtriangles and evaluating

integrals over them separately. If IR is computed without including the hatched region in Figure C.1

in any of the integrals, there would be no need to deal with singularities. One can verify that

dropping the terms resulting from the lower limit in (C.124) is equivalent to computing IR in this

fashion. Therefore, we have

Imn =


ρm−2n

0

c
2n+1

2 (m− 2n)
(m 6= 2n)

1

c
2n+1

2

ln ρ0 (m = 2n)

(C.125)

plus divergent terms which can be ignored.

In the second case, the integral is evaluated using the following recursive relations [203, §2.261,

§2.263]

Imn =
ρm−1

0

(m− 2n)c
√
R2n−1

0

− (2m− 2n− 1)b

2(m− 2n)c
Im−1
n − (m− 1)a

(m− 2n)c
Im−2
n for m 6= 2n, n ≥ 1,

(C.126a)

Imn =
−ρm−1

0

(m− 1)c
√
R2n−1

0

− b

2c
Im−1
n +

1

c
Im−2
n for m = 2n, n ≥ 1, (C.126b)

I0
n =

2(2cρ0 + b)

(2n− 1)∆
√
R2n−1

0

+
8(n− 1)c

(2n− 1)∆
I0
n−1 for n ≥ 1, (C.126c)

I0
0 =

1

c
ln

(
2
√
cR0 + 2cρ0 + b

2
√
ca+ b

)
for c > 0, (C.126d)

=
−1√−c

(
arcsin

2cρ0 + b√
−∆

− arcsin
b√
−∆

)
for c < 0,∆ < 0, (C.126e)

where R0 = a+ bρ0 + cρ2
0 and ∆ = 4ac− b2.

In the third case, the integral can be written as

Imn =

ρ0∫
0

ρm(√
a+ bρ

)2n+1dρ. (C.127)
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Integrating this by parts, we get

Imn =
−2ρm0

(2n− 1)b
(√
a+ bρ0

)2n−1 +

ρ0∫
0

2mρm−1

(2n− 1)b
(√
a+ bρ

)2n−1dρ (C.128)

=
−2ρm0

(2n− 1)b
(√
a+ bρ0

)2n−1 +

ρ0∫
0

2mρm−1(a+ bρ)

(2n− 1)b
(√
a+ bρ

)2n+1dρ (C.129)

=
−2ρm0

(2n− 1)b
(√
a+ bρ0

)2n−1 +
2am

(2n− 1)b
Im−1
n +

2m

2n− 1
Imn . (C.130)

Therefore, Imn satisfies the following recursive relation

Imn =
−2ρm0

(2n− 2m− 1)b
(√
a+ bρ0

)2n−1 +
2ma

(2n− 2m− 1)b
Im−1
n . (C.131)

For m = 0, the integral is evaluated using the following closed-form expression

I0
n =

2

(2n− 1)ba2n−1
− 2

(2n− 1)bR2n−1
0

. (C.132)

Case four is trivial since R0 is then a constant.
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